

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.com.cn

–			
I	EST REPORT		
Report No:	CTC20202040E		
Applicant:	XonTel Technology Trd. Co. W.L.L		
Address:	Kuwait City , Qibla , Aladel Tower , F21 , state of Kuwait		
Manufacturer	XonTel Technology Trd. Co. W.L.L		
Address	Kuwait City , Qibla , Aladel Tower , F21 , state of Kuwait		
Product Name	IP Phone		
Trade Mark:	XonTel		
Model/Type reference:	XT-19G		
Listed Model(s):	/		
Standard:	EN 55032: 2015/AC: 2016 EN 55035: 2017 EN 61000-3-2: 2014 EN 61000-3-3: 2013 EN 55024: 2010+A1: 2015		
Date of receipt of test sample:	Dec. 30, 2019		
Date of testing	Dec. 31, 2019 to Mar. 05, 2020		
Date of issue	Jan. 07, 2020		
Result	PASS		
Compiled by: (Printed name+signature)	Carl Wu		
Supervised by:	zhang		
(Printed name+signature)	Eric Zhang		
Approved by:			
(Printed name+signature)	Walter Chen		
Testing Laboratory Name::	CTC Laboratories, Inc.		
Address:	2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China		
(Printed name+signature) Testing Laboratory Name: Address	Walter Chen CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan		

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1. TE	EST SUMMARY	
1.1.	Test Standards	3
1.2.	REPORT VERSION	
1.3.	TEST DESCRIPTION	4
1.4.	Test Facility	5
1.5.	Measurement Uncertainty	5
1.6.	ENVIRONMENTAL CONDITIONS	6
2. GI	ENERAL INFORMATION	7
2.1.	CLIENT INFORMATION	7
2.2.	GENERAL DESCRIPTION OF EUT	7
2.3.	ACCESSORY EQUIPMENT INFORMATION	8
2.4.	DESCRIPTION OF TEST MODES	9
2.5.	Measurement Instruments List	10
3. EN	MC EMISSION TEST	
3.1.	RADIATED EMISSION	
3.2.	Conducted Emission (AC Mains)	22
3.3.	Conducted Emission (Signal Mains)	25
3.4.	HARMONIC CURRENT EMISSION	
3.5.	Voltage Fluctuation and Flicker	
4. EN	MS IMMUNITY TEST	
4.1.	ELECTROSTATIC DISCHARGE	
4.2.	RADIO FREQUENCY ELECTROMAGNETIC FIELD	
4.3.	Fast Transients Common Mode	
4.4.	SURGE	
4.5.	RADIO FREQUENCY COMMON MODE	
4.6.	VOLTAGE DIPS AND INTERRUPTIONS	40
5. EL	UT TEST PHOTOS	41
6. Pł	HOTOGRAPHS OF EUT CONSTRUCTIONAL	

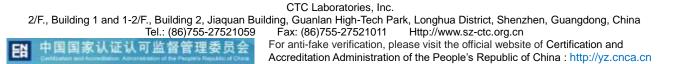
CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下arti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

EN 55032: 2015/AC: 2016–Electromagnetic compatibility of multimedia equipment–Emission Requirements


<u>EN 55035:2017</u>–Electromagnetic compatibility of multimedia equipment–Immunity requirements <u>EN 61000-3-2:2014</u>–Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤ 16 A per phase)

<u>EN 61000-3-3:2013</u>–Electromagnetic compatibility (EMC) - Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connection

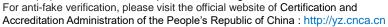
EN 55024: 2010+A1: 2015–Information technology equipment — Immunity characteristics — Limits and methods of measurement

1.2. Report version

Revised No.	Date of issue	Description
01	Mar. 06, 2020	Original
02	Jan. 07, 2020	This report adds the applicant, manufacturer, model and trademark on the basis of the original report CTC20192368E02, and the other remains unchanged.

1.3. Test Description

Emission				
Test Item	Standard requirement	Result	Test Engineer	
Radiated Emission (Below 1G)	EN55032	Pass	Terry Su	
Radiated Emission (Above 1G)	EN55032	Pass	Terry Su	
Conducted Emission (AC Mains)	EN55032	Pass	Jon Huang	
Conducted Emission (Signal Mains)	EN55032	Pass	Jon Huang	
Harmonic Current Emissions	EN61000-3-2	N/A	N/A	
Voltage Fluctuations and Flicker	EN61000-3-3	Pass	Lance Lan	
Immunity				
Test Item	Standard requirement (EN55024/ EN55035)	Result	Test Engineer	
Electrostatic Discharge	EN 61000-4-2	Pass	Lance Lan	
Radio Frequency Electromagnetic Field	EN 61000-4-3	Pass	Lance Lan	
Electrical Fast Transient / Burst	EN 61000-4-4	Pass	Lance Lan	
Surges	EN 61000-4-5	Pass	Lance Lan	
Injected Current	EN 61000-4-6	Pass	Lance Lan	
Voltage Dips and Interruptions	EN 61000-4-11	Pass	Lance Lan	


Note: "N/A" is applicable.

中国国家认证认

EN

The measurement uncertainty is not included in the test result.

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 可监督管理委员会

1.4. Test Facility

CTC Laboratories, Inc.

Add: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) f or the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in th e identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (F CC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and 管理委员 可监

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U , (dB)	NOTE
C01	ANSI	150 KHz ~ 30MHz	3.2	/

B. Radiated Measurement:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.5 dB	(1)
Radiated Emission	1~18GHz	5.1 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Lative Humidity	55 %
Air Pressure	101kPa

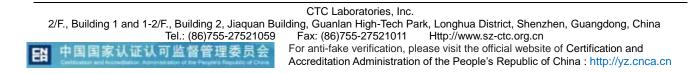
2. GENERAL INFORMATION

2.1. Client Information

Applicant:	XonTel Technology Trd. Co. W.L.L	
Address:	Kuwait City , Qibla , Aladel Tower , F21 , state of Kuwait	
Manufacturer:	XonTel Technology Trd. Co. W.L.L	
Address:	Kuwait City, Qibla, Aladel Tower, F21, state of Kuwait	

2.2. General Description of EUT

Product Name:	IP Phone
Marketing Name:	XonTel
Model/Type reference:	XT-19G
Listed Model(s):	/
Power supply:	5Vdc/0.6A from AC/DC Adapter Supplied from POE
Adapter Model 1:	F05L5-050060SPAV Input: AC100-240V 50/60Hz 0.2A Output:5V/0.6A
Adapter Model 2:	F05L5-050060SPAB Input: AC100-240V 50/60Hz 0.2A Output:5V/0.6A
Hardware version:	N/A
Software version:	N/A



2.3. Accessory Equipment information

Equipment Information			
Name	Model	S/N	Manufacturer
IP Phone	Х7	JGB28B000005	Fanvil
POE Supply	H3C S1208-PWR	219801A0SYM17B0000LS	НЗС
Router	FAST 5280	253703944	Sagemcom
Headset		X18033620	Fanvil
Cable Information			
Name	Shielded Type	Ferrite Core	Length
Lan Cable	N/A	N/A	1M

2.4. Description of Test Modes

Test mode	Communicate by hands free	Communicate by telephone receiver	Communicate by headset	AC/DC Adapter	POE Supply
1	•				
2					
3					
4					•
5					
6					

Note: ■ is operation mode.

Pre-scan above all test mode, found below test mode which it was worse case mode, so only show the test data for worse case mode on the test report.

Test item	Test mode
Radiated Emission	1, 4
Conducted Emission(AC Mains)	2
Conducted Emission(Signal Mains)	2, 5
Harmonic Current Emissions	N/A
Voltage Fluctuations and Flicker	1
Radio Frequency Electromagnetic Field	All
Electrostatic Discharge	All
Electrical Fast Transient / Burst	All
Injected Current	All
Voltage Dips and Interruptions	1, 2, 3
Surges	All

Note: "N/A" is applicable.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

2.5. Measurement Instruments List

Cond	Conducted Emission										
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until						
1	LISN	LISN R&S		101112	Dec. 27, 2020						
2	LISN R&S		ENV216	101113	Dec. 27, 2020						
3	EMI Test Receiver	R&S	ESCI	100920	Dec. 27, 2020						
4	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 27, 2020						

Radia	Radiated Emission								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until				
1	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 27, 2020				
2	Spectrum Analyzer	HP	8563E	02052	Dec. 27, 2020				
3	Horn Antenna	orn Antenna Schwarzbeck		648	Dec. 27, 2020				
4	Pre-Amplifier	nplifier HP		1937A03050	Dec. 27, 2020				
5	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 27, 2020				
6	EMI Test Receiver	R&S	ESCI	100658	Dec. 27, 2020				
7	Antenna Mast	UC	UC3000	N/A	N/A				
8	Turn Table	UC	UC3000	N/A	N/A				
9	UNIVERSAL RADIO COMMUNICATION Rohde & Schwarz		CMU200	114694	Dec. 27, 2020				

Harm	Harmonic Current Emissions & Voltage Fluctuations and Flicker										
Item	Calibrated until										
1	Programmable AC Power Source	Mtoni	PHF1530	MTPS001	Dec. 27, 2020						
2	Universal Power Analyzer	Voltech	PM6000	200006700723	Dec. 27, 2020						
5	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 27, 2020						

Elec	Electrostatic Discharge									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until					
1	ESD Simulator	EM TEST	DITO	V1113109156	Dec. 27, 2020					
2	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 27, 2020					

Fast	Fast Transients Common Mode									
Item Test Equipment Manufacturer Model No. Serial No. Calibrat										
1	Electrical fast transient generator	3ctest	EFT-4003G	EC0471140	Dec. 27, 2020					
2	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 27, 2020					

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

RF Ele	RF Electromagnetic Field										
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until						
1	INTEGRATED MEASUREMENT SYSTEM	R&S	S IMS		Dec. 27, 2020						
2	Signal Generator	Agilent	N5182A	MY47420864	Dec. 27, 2020						
3	Field probe	ETS	HI-6005	89587	Dec. 27, 2020						
4	RS Antenna	R&S	HL046E	100037	Dec. 27, 2020						
5	RS Antenna	SCHWARZBECK	STLP 9149	9149-163	Dec. 27, 2020						
6	POWER AMPLIFIER	BONN ELEKTRONIK	BLWA 0830-160/100/40D	076788	Dec. 27, 2020						
7	POWER AMPLIFIER	MICOTOP	MPA-3000-6000-50	MPA1706258	Dec. 27, 2020						
8	Audio Analyzer	Rohde & Schwarz	UPL	102216	Dec. 27, 2020						
9	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 27, 2020						
10	DUAL DIRECTIONAL COUPLER	AR	DC7144A	0317128	Dec. 27, 2020						
11	11 TRANSMITTING AR		AT4002A	0321644	Dec. 27, 2020						
12	Audio Analyzer	Rohde & Schwarz	UPL	SB3439	Dec. 27, 2020						

Surge	es				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Surge generator	3ctest	SG-5006G	EC5581149	Dec. 27, 2020
2	Surge CDN	3ctest	SGN-20G	EC5551128	Dec. 27, 2020
3	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 27, 2020

RF Co	RF Common Mode									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until					
1	Conducted Disturbances Test System	Schloder	CDG 6000	126A1266/2013	Dec. 27, 2020					
2	Coupling/Decoupling	Schloder	CDN-M2+3	A2210251/2013	Dec. 27, 2020					
3	Audio Analyzer	Rohde & Schwarz	UPL	102216	Dec. 27, 2020					
4	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 27, 2020					
5	DUAL DIRECTIONAL COUPLER	AR	DC7144A	0317128	Dec. 27, 2020					
6	TRANSMITTING AERIAL	AR	AT4002A	0321644	Dec. 27, 2020					
7	Audio Analyzer	Rohde & Schwarz	UPL	SB3439	Dec. 27, 2020					

Note: The Cal. Interval was one year.

中国国家认证认可监督管理委员会

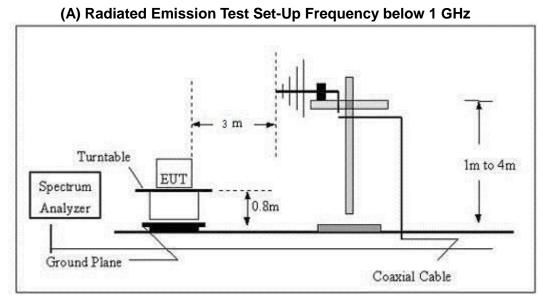
EN

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

3. EMC EMISSION TEST

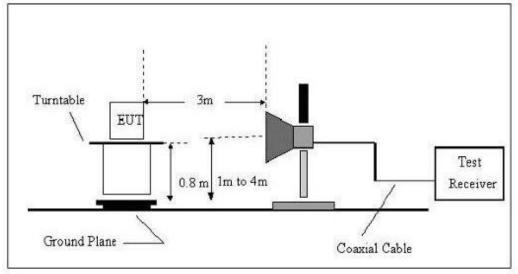
3.1. Radiated Emission


<u>LIMIT</u>

Please refer to CENELEC EN 55032 Annex A Table A.4 & A.5

Frequency range (MHz)	Quasi-peak limits dBµV/m@3m	Quasi-peak limits dBµV/m@10m
30~230	40	30
230~1000	47	37

Frequency range (GHz)	Average limits dBµV/m@3m	Peak limits dBµV/m@3m		
1 ~ 3	50	70		
3 ~ 6	54	74		


TEST CONFIGURATION

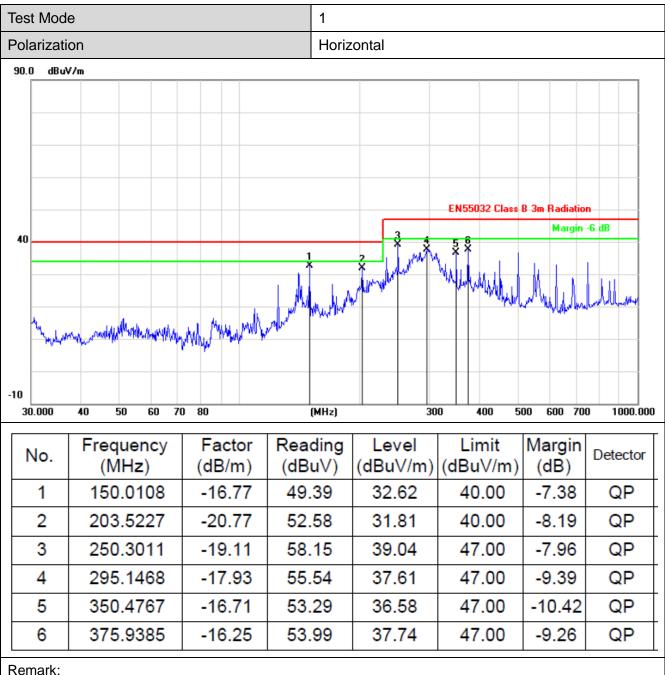
CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 不 anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

(B) Radiated Emission Test Set-Up Frequency above 1GHz

TEST PROCEDURE

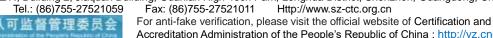
Please refer to CENELEC EN 55032 Clause 6.3 for the measurement methods

TEST MODE

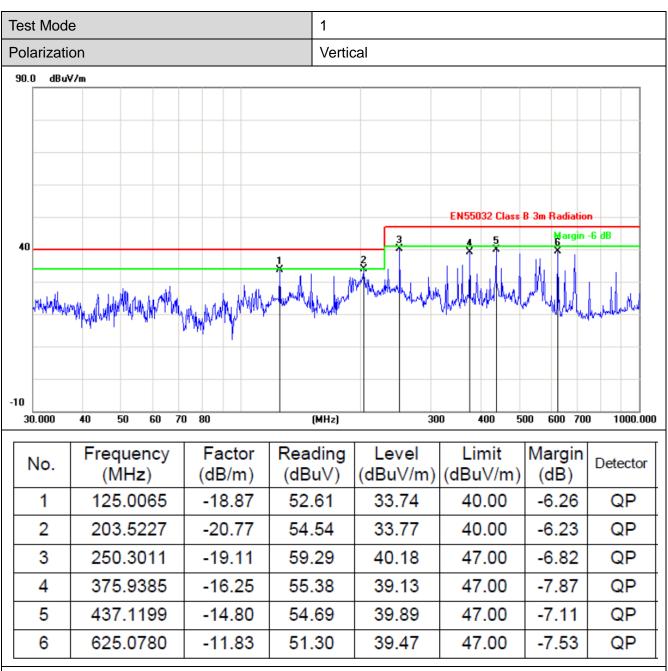

Please refer to the Clause 2.4

TEST RESULTS

(1) Below 1G


Remark:

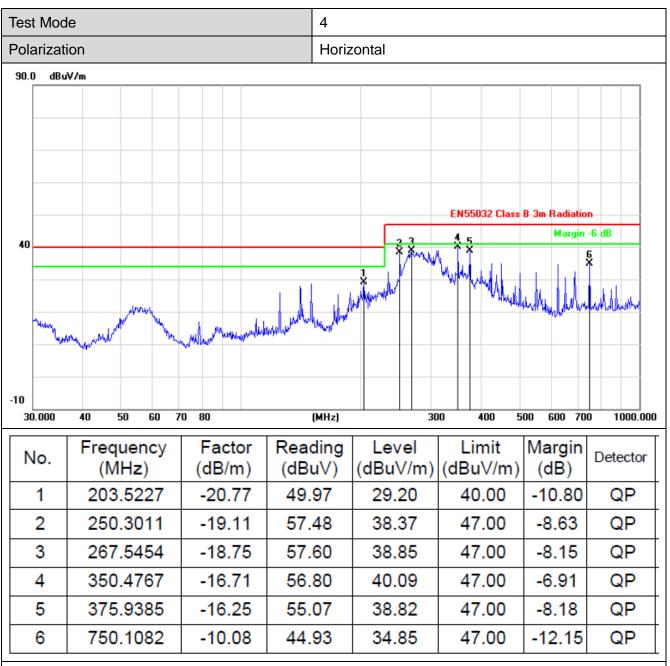
中国国家认证认


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

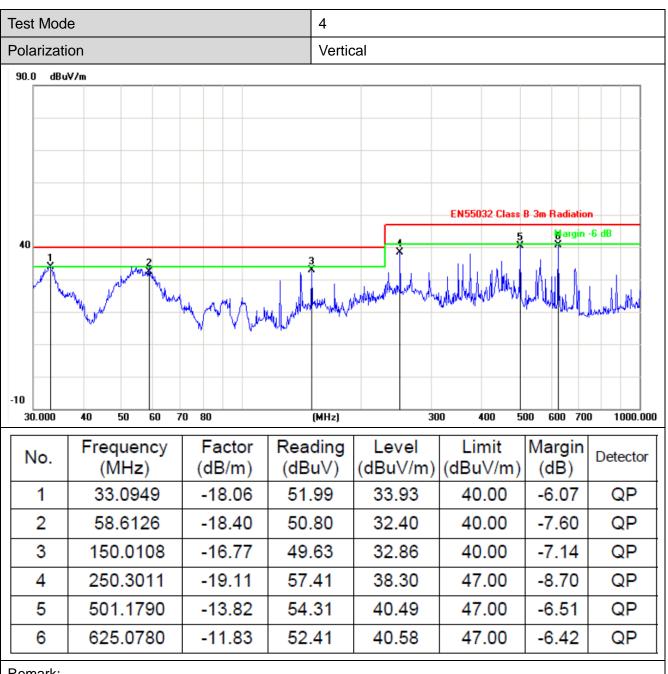
CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

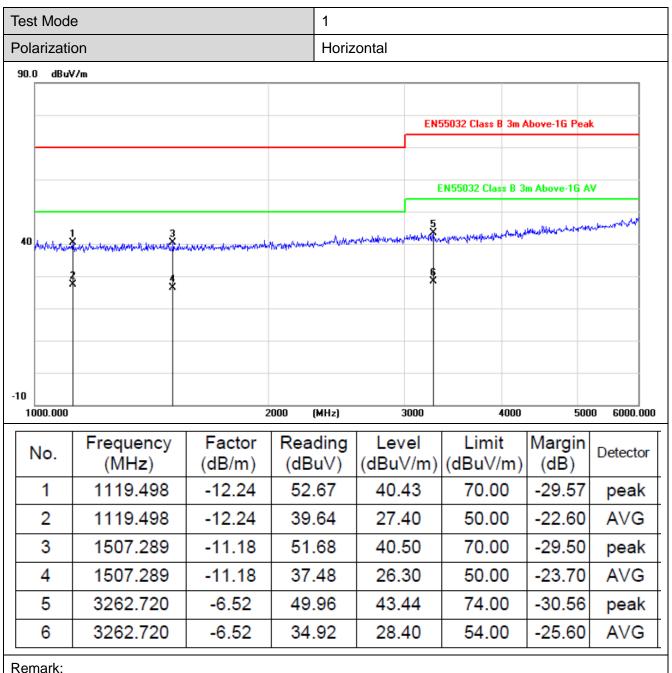

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

 Tel.: (86)755-27521059
 Fax: (86)755-27521011

 中国国家认证认可监督管理委员会
 For anti-fake verification, pleater

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value


中国国家认证认可监督管理委员会

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Http://www.sz-ctc.org.cn Fax: (86)755-27521011

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

(2) Above 1G

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tes	t Mod	е			1					
Pola	arizati	on			Vertio	cal				
90.0	D dBu	//m								
							EN	55032 Class B 3n	Above-1G Pea	ak
							l	EN55032 Class B	3m Above-16	AV
		1 X 2			5 X				and a stand of the	an make and a second
40	annaana	3	alternation	and and the second second		walkernow	Mathemath	in the block of the last	a second record and a second	
		* 4 *			6 X					
10										
-10 1(000.000			2000	(MHz)	:	3000	400) 50	00 6000.000
~		Frequency	Factor	Rea	ding	Lev	el	Limit	Margin	Detector
	lo.	(MHz)	(dB/m)	(dB	uV)	(dBu∖	//m)	(dBuV/m	(dB)	Detector
	1	1158.266	-12.18	58.	14	45.9	96	70.00	-24.04	peak
	2	1158.266	-12.18	44.	58	32.4	0	50.00	-17.60	AVG
	3	1292.039	-11.70	53.	89	42.1	9	70.00	-27.81	peak
	4	1292.039	-11.70	41.	50	29.8	30	50.00	-20.20	AVG
	5	2507.215	-7.58	52.	78	45.2	20	70.00	-24.80	peak
	6	2507.215	-7.58	38.	38	30.8	30	50.00	-19.20	AVG
	nork:		•	·		•			•	·Ł

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Test Mod	Test Mode 4								
Polarizati	on		Hori	zontal					
90.0 dBu ¹	√/m		1						
				_	ENS	55032 Class B 3m	Above-1G Pea	ak	
					E	N55032 Class B 3	3m Above-1G /	AV	
		13		ſ				5	
40 Junior	and an and proventing a second second	1 3 * *	and and a source of a strategy and the second	monum	www.	and the manage of based where	phone and a second	and a second	
		24						6 X	
-10									
1000.000	1		2000 (MHz)		000	4000	50	00 6000.000	
No.		Factor	Reading			Limit	Margin	Detector	
1	(MHz) 1764.712	(dB/m) -10.99	(dBuV) 55.36	(dBuV/ 44.37		(dBuV/m) 70.00	(dB) -25.63	nack	
								peak	
2	1764.712	-10.99	41.29	30.30		50.00	-19.70	AVG	
3	1875.561	-10.53	55.09	44.56		70.00	-25.44	peak	
4	1875.561	-10.53	41.23	30.70	0	50.00	-19.30	AVG	
5	5456.438	-1.20	49.92	48.72	2	74.00	-25.28	peak	
6	5456.438	-1.20	35.10	33.90	0	54.00	-20.10	AVG	
Remark: 1.Factor (dB/m) = Antenna F	actor (dB/m)-	-Cable Facto	r (dB)-Pre-	amp	lifier Factor			

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Tes	t Mod	e		4						
Pol	arizati	on		Ve	rtical					
90.	D dBu\	//m								
						EN	55032 Class B 3	m Above-1G Pe	ak	
							EN55032 Class I	3m Above-1G	AV	
			3 1 ×						whenhaugen	
40	mound	and margaration and margaretic and	went with who we	- margan al margarette	how we have the started	munun	and an and an and an and an and an and an	apple and a second	·····	
			2 4 6							
-10	000.000			2000 (MHz)		3000	400	0 50	00 6000.0	000
	JUU.UUU			•					лоо 6000.0	
1	No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)			Limit (dBuV/m	Margin (dB)	Detector	
	1	1625.096	-11.16	53.88	42.7	2	70.00	-27.28	peak	T
	2	1625.096	-11.16	39.76	28.6	60	50.00	-21.40	AVG	ΤI
	3	1764.712	-10.99	60.76	49.7	7	70.00	-20.23	peak	Ť
	4	1764.712	-10.99	45.39	34.4	0	50.00	-15.60	AVG	Ť
	5	1875.561	-10.53	56.11	45.5	58	70.00	-24.42	peak	Τ
	6	1875.561	-10.53	41.63	31.1	0	50.00	-18.90	AVG	\Box

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

可监督管理委员会

2.Margin value = Level -Limit value

中国国家认证认

EN

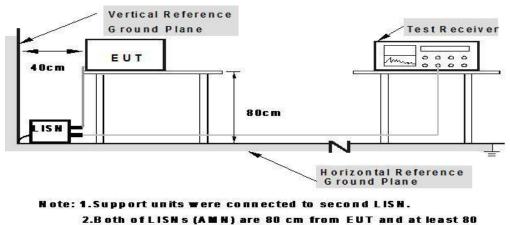
CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

3.2. Conducted Emission (AC Mains)

LIMIT


Please refer to CENELEC EN 55032 Annex A3 Table A.10

Frequency range MHz		nits (μV)
	Quasi-peak	Average
0,15 to 0,50	66 to 56	56 to 46
0,50 to 5	56	46
5 to 30	60	50
NOTE 4. The lawser limits		

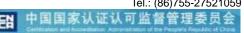
NOTE 1 The lower limit shall apply at the transition frequencies.

NOTE 2 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.

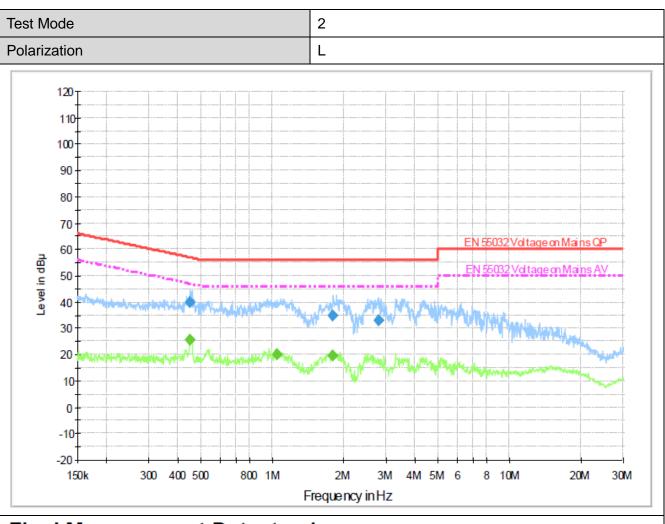
TEST CONFIGURATION

from other units and other metal planes

TEST PROCEDURE


Please refer to CENELEC EN 55032 Annex A3 Table A.8

TEST MODE


Please refer to the Clause 2.4

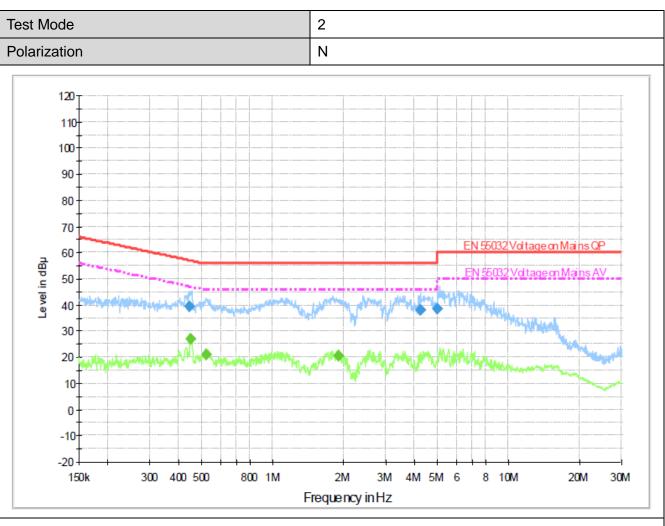
TEST RESULTS

CTC Laboratories, Inc.

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.449640	39.9	1000.00	9.000	On	L1	9.4	17.0	56.9	
1.796640	34.7	1000.00	9.000	On	L1	9.5	21.3	56.0	
2.787210	32.8	1000.00	9.000	On	L1	9.5	23.2	56.0	

Final Measurement Detector 2


Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.449640	25.6	1000.00	9.000	On	L1	9.4	21.3	46.9	
1.043940	19.9	1000.00	9.000	On	L1	9.5	26.1	46.0	
1.789480	19.5	1000.00	9.000	On	L1	9.5	26.5	46.0	

CTC Laboratories, Inc.

警管理委员会 中国国家认证认可监

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and

Final Measurement Detector 1

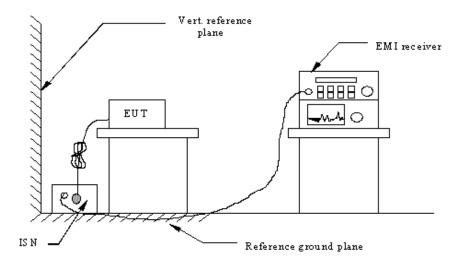
Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµ V)	Time	(kHz)			(dB)	(dB)	(dBµ	
		(ms)						`∨)	
0.440750	39.4	1000.00	9.000	On	N	9.4	17.6	57.0	
4.221580	37.9	1000.00	9.000	On	N	9.5	18.1	56.0	
4.992190	38.6	1000.00	9.000	On	Ν	9.5	17.4	56.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.449640	26.8	1000.00	9.000	On	Ν	9.4	20.1	46.9	
0.521210	21.2	1000.00	9.000	On	Ν	9.4	24.8	46.0	
1.892340	20.7	1000.00	9.000	On	Ν	9.5	25.3	46.0	

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn 101


3.3. Conducted Emission (Signal Mains)

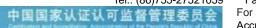
LIMIT

Please refer to CENELEC EN 55032 Annex A Table A.12

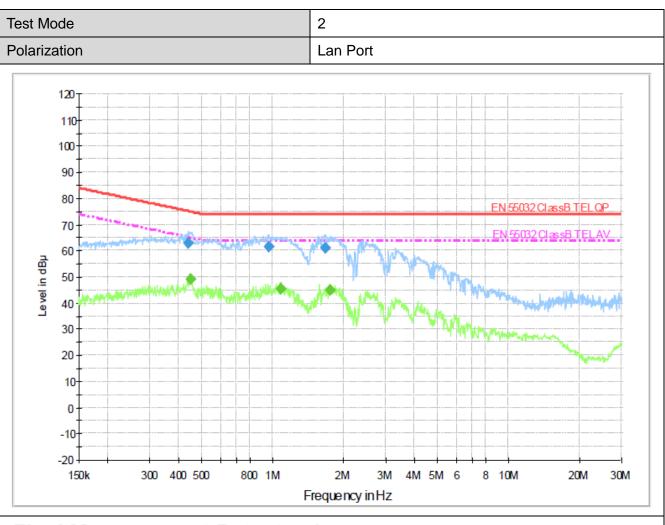
Frequency range	Voltage Limi	ts dB(μV)	Current limits dB(μA)			
(MHz)	Quasi-peak	Average	Quasi-peak	Average		
0.15 ~ 0.5	84 ~ 74	74 ~ 64	40 ~ 30	30 ~ 20		
0.5 ~ 30	74	64	30	20		
Note: if "150 Ω to 50 Ω adaptest data.	tor" applied, corre	ection factor of §).5dB should be ad	ded to the		

TEST CONFIGURATION

TEST PROCEDURE


Please refer to CENELEC EN 55032 section C4

TEST MODE


Please refer to the Clause 2.4

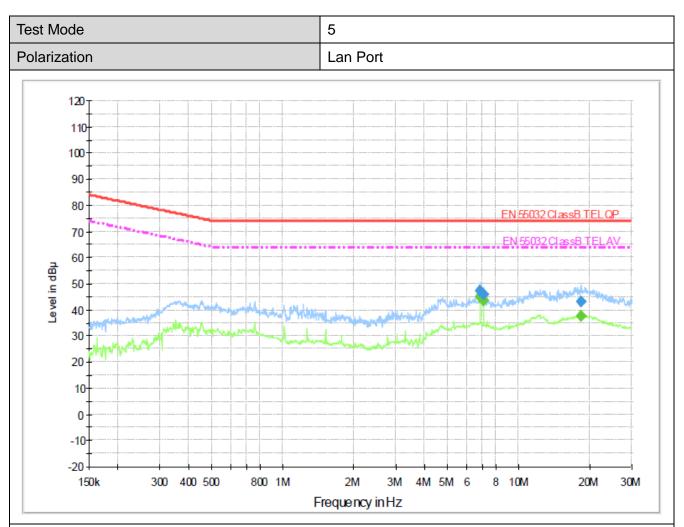
TEST RESULTS

CTC Laboratories, Inc.

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.437250	63.0	1000.00	9.000	On	Ν	9.4	12.1	75.1	
0.959990	61.4	1000.00	9.000	On	Ν	9.5	12.6	74.0	
1.672070	60.8	1000.00	9.000	On	N	9.5	13.2	74.0	

Final Measurement Detector 2


Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.447850	49.3	1000.00	9.000	On	N	9.4	15.6	64.9	
1.082130	45.4	1000.00	9.000	On	Ν	9.5	18.6	64.0	
1.747130	45.0	1000.00	9.000	On	Ν	9.5	19.0	64.0	

CTC Laboratories, Inc.

中国国家认证认可监督管理委员会

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
6.815870	47.3	1000.00	9.000	On	L1	9.5	26.7	74.0	
7.065200	45.9	1000.00	9.000	On	L1	9.5	28.1	74.0	
18.270400	42.9	1000.00	9.000	On	L1	9.7	31.1	74.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
6.815870	45.1	1000.00	9.000	On	L1	9.5	18.9	64.0	
7.065200	43.6	1000.00	9.000	On	L1	9.5	20.4	64.0	
18.416860	37.4	1000.00	9.000	On	L1	9.7	26.6	64.0	

CTC Laboratories, Inc.

可监督管理委员会 中国国家认证认 ΕN

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and

3.4. Harmonic Current Emission

<u>LIMIT</u>

EN61000-3-2 Clause 7

Class A equipment

Harmonic order	Maximum permissible harmonic current A
Odd har	
3	2,30
5	1,14
7	0,77
9	0,40
11	0,33
13	0,21
$15 \le n \le 39$	0,15 1 <u>5</u> n
Even har	monics
2	1,08
4	0,43
6	0,30
$8 \le n \le 40$	0,23 <u>8</u>

Class B equipment

not exceed the values given in Class A limit multiplied by a factor of 1, 5

> Class C equipment

Active input power >25 W

Harmonic order	Maximum permissible harmonic currrent expressed as a percentage of the input current at the fundamental frequency
n	%
2	2
3	30 · <i>λ</i> *
5	10
7	7
9	5
$11 \le n \le 39$	3
(odd harmonics only)	
* λ is the circuit power factor	

Active input power ≤25 W

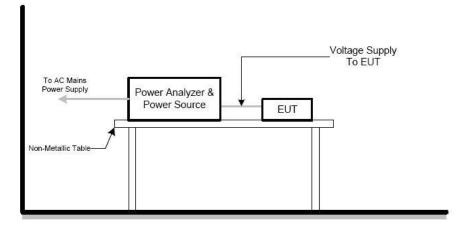
Harmonic order n	Maximum permissible harmonic current per watt mA/W	Maximum permissible harmonic current A
3	3,4	2,30
5	1,9	1,14
7	1,0	0,77
9	0,5	0,40
11	0,35	0,33
$13 \le n \le 39$ (odd harmonics only)	<u>3,85</u> n	See Table 1

or the third harmonic current, expressed as a percentage of the fundamental current, shall not exceed 86 % and the fifth harmonic current shall not exceed 61 %. Also, the waveform of the input current shall be such that it reaches the 5 % current threshold before or at 60°, has its peak value before or at 65° and does not fall below the 5 % current threshold before 90°, referenced to any zero crossing of the fundamental supply voltage. The current threshold is 5 % of the highest

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



absolute peak value that occurs in the measurement window, and the phase angle measurements are made on the cycle that includes this absolute peak value

⊳ **Class D equipment**

Harmonic order n	Maximum permissible harmonic current per watt mA/W	Maximum permissible harmonic current A
3	3,4	2,30
5	1,9	1,14
7	1,0	0,77
9	0,5	0,40
11	0,35	0,33
$13 \le n \le 39$ (odd harmonics only)	<u>3,85</u> n	See Table 1

TEST CONFIGURATION

TEST PROCEDURE

Please refer to EN61000-3-2 for the measurement methods.

TEST MODE

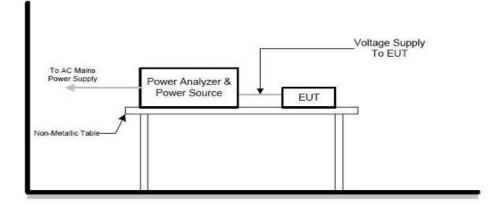
Please refer to the Clause 2.4

TEST RESULTS

Note: The power of the EUT is less than 75W, So this test item is not applicable.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn


3.5. Voltage Fluctuation and Flicker

LIMIT

Please refer to EN61000-3-3

Teete	Tests Limits IEC555-3 IEC/EN 61000-3-3		Descriptions	
Tests				
Pst	\leq 1.0, Tp= 10 min.	≤ 1.0, Tp= 10 min.	Short Term Flicker Indicator	
Plt	N/A	≤ 0.65, Tp=2 hr.	Long Term Flicker Indicator	
dc	≤ 3 %	≤ 3.3%	Relative Steady-State ∨-Chang	
dmax	$\leq 4\%$	$\leq 4\%$	Maximum Relative ∨-change	
d (t)	N/A	\leq 3.3% for $>$ 500 ms	Relative V-change characteristic	

TEST CONFIGURATION

TEST PROCEDURE

Please refer to EN61000-3-3 for the measurement methods.

TEST MODE

Please refer to the Clause 2.4

TEST RESULTS

Fest Mode		1			
Voltech IEC61000-	3 Windows Software 1.2	27.13	Test Date: 3	Mar 2020 16:11	
Type of Test:	Flickermeter Test - Ta	ble (EN61000-3-3:2013	3)		
Power Analyzer:	Voltech PM6000 SN: 200006700723 Firmware Version: v1.22.07RC6				
	1. SN: 090015502565, 28 Adjust	ed Date: 2 AUG 2013. 2. SN:	090015500533, 28 Adjusted D	ate: 19 MAR 2010.	
	3. SN: 090015502345, 28 Adjust	ed Date: 21 JUN 2012. 4. SN	:None Adjusted Date:None		
	5. SN:None Adjusted Date:Non	e 6. SN:None Adjusted Dat	e:None		
	Shunt(s):				
	1. SN: 091024303183, 4 Adjuste	d Date: 8 AUG 2013. 2. SN:	091024302146, 4 Adjusted Date:	22 JUN 2012.	
	3. SN: 091024302144, 4 Adjuste	d Date: 22 JUN 2012. 4. SN:	None Adjusted Date:None		
	5. SN:None Adjusted Date:Non	e 6. SN:None Adjusted Date	e:None		
AC Source:	Mains / Manual Source	;			
Overall Result:	Notes:				
	Measurement method	- Voltage			
PASS					
	Pst	dc (%)	dmax (%)	Tmax(> 3.3%)(ms)	
Limit	1.000	3.300	4.000	500	
Reading 1	0.366	0.000	1,196	0	

4. EMS IMMUNITY TEST

Performance criteria

General performance criteria

- Performance criteria A for immunity tests with phenomena of a continuous nature;
- Performance criteria B for immunity tests with phenomena of a transient nature;
- Performance criteria C for immunity tests with power interruptions exceeding a certain time.

The equipment shall meet the minimum performance criteria as specified in the following.

Criteria	During test	After test
A	Shall operate as intended. May show degradation of performance (see note 1). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance (see note 2). Shall be no loss of function. Shall be no loss of stored data or user programmable functions.
В	May show loss of function (one or more). May show degradation of per formance(see note 1). No unintentional transmissions.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no degradation of performance (see note 2). Shall be no loss of stored data or user programmable functions.
C	May be loss of function (one or more).	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no degradation of performance (see note 2).

NOTE 1:

Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance.

If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2:

No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed.

If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

CTC Laboratories, Inc.

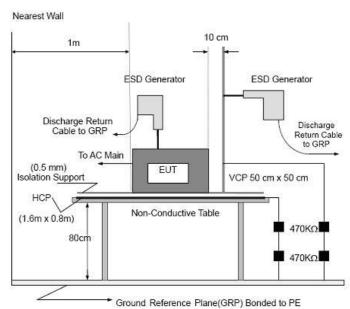
督管理委员会

可监

EN

4.1. Electrostatic Discharge

PERFORMANCE CRITERION


Standard	Criterion
EN 50024/EN 55035/EN 61000-4-2	Criteria B

TEST LEVEL

Contact Discharge at ±2kV, ±4kV

Air Discharge at ±2kV, ±4kV, ±8kV

TEST CONFIGURATION

TEST PROCEDURE

Please refer to EN 61000-4-2 for the measurement methods.

Contact Discharge:

The ESD generator is held perpendicular to the surface to which the discharge is applied and the tip of the discharge electrode touch the surface of EUT. Then turn the discharge switch. The generator is then re-triggered for a new single discharge and repeated at least 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

Air Discharge:

中国国家认证认

Air discharge is used where contact discharge can't be applied. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated at least 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 管理委员会 可监

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Indirect discharge for horizontal coupling plane:

At least 10 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT.

Indirect discharge for vertical coupling plane:

At least 10 single discharges shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

TEST MODE

Please refer to the Clause 2.4

TEST RESULTS

Test mode	e	All			
Туре	Type of discharge	Discharge voltage (kV)	Observations Performance	Criteria Level	Result
	Contact	±2	/	В	
	discharge	±4	/	В	
Direct	Air discharge	±2	А	В	Pass
		±4	А	В	
		±8	А	В	
HCP (6 sides)	±2	А	В		
	HCP (6 sides)	±4	А	В	Pass
	VCP (4 sides)	±2	А	В	F 033
		±4	А	В	

Note: The ancillary equipment's specification for an acceptable level of performance or degradation of performance during and/or after the ESD tests.

CTC Laboratories, Inc.

 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

 Tel.: (86)755-27521059
 Fax: (86)755-27521011
 Http://www.sz-ctc.org.cn

管理委员会

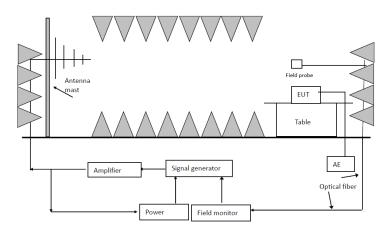
中国国家认证认可监

Description of Discharge Point

Contact discharge-Yellow, Air discharge-Red

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下了工作的 中国国家认证认可监督管理委员会 任何 中国国家认证认可监督管理委员会

4.2. Radio Frequency Electromagnetic Field


PERFORMANCE CRITERION

Standard	Criterion
EN 50024/EN 55035/EN 61000-4-3	Criteria A

TEST LEVEL

Condition of Test	Remark	
Fielded strength	3V/m	
Radiated signal	Modulated	
Scanning frequency	80-1000MHz, 1800MHz, 2600MHz, 3500MHz, 5000MHz	
Sweep time of radiated	0.0015 Decade/s	
Dwell time	1 Sec.	

TEST CONFIGURATION

TEST PROCEDURE

Please refer to EN 61000-4-3 for the measurement methods.

TEST MODE

Please refer to the Clause 2.4

可监

中国国家认证认

管理委员会

TEST RESULTS

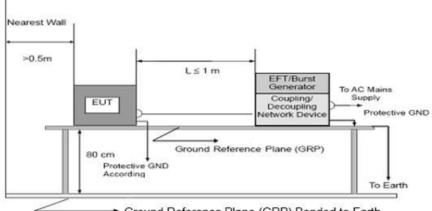
Test mode:	All		
Antenna Polarity	Observations (Performance Criterion)	Criteria Level	Result
H/V	А	А	Pass

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and

4.3. Fast Transients Common Mode


PERFORMANCE CRITERION

Standard	Criterion
EN 50024/EN 55035/EN 61000-4-4	Criteria B

TEST LEVEL

Level: 1KV for AC port, 0.5KV for signal port Impulse Frequency: 5 kHz; Tr/Td: 5/50ns; Burst Duration: 15ms; Burst Period: 300ms

TEST CONFIGURATION

Ground Reference Plane (GRP) Bonded to Earth

TEST PROCEDURE

Please refer to EN 61000-4-4 for the measurement methods.

TEST MODE

Please refer to the Clause 2.4

中国国家认证认可监

TEST RESULTS

Test mode:		All		
Lead under Test	Coupling Direct / Clamp	Observations (Performance Criterion)	Criteria Level	Result
L	Direct	A	В	Pass
Ν	Direct	A	В	Pass
Signal port	Coupling	А	В	Pass

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn Http://www.sz-ctc.org.cn

4.4. Surge

PERFORMANCE CRITERION

Standard	Criterion
EN 50024/EN 55035/EN 61000-4-5	Criteria B

TEST LEVEL

Level: 1kV for line to line, 2kV for line to ground Voltage Waveform: 1.2/50 us; Current Waveform: 8/20 us Pluse quantity: 5, interval time: 60 seconds Phase: 0°, 90°, 180°, 270°

TEST CONFIGURATION

TEST PROCEDURE

Please refer to EN 61000-4-5 for the measurement methods.

管理委员会

TEST MODE

Please refer to the Clause 2.4

中国国家认证认可监

FN

TEST RESULTS

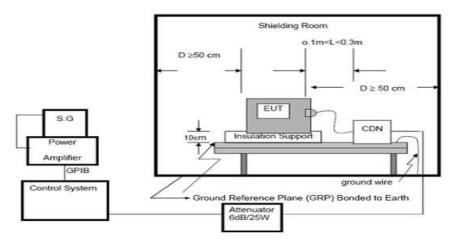
Test mode:		All		
Lead under Test	Phase	Observations (Performance Criterion)	Criteria Level	Result
L - N	0°/90°/180°/270°	A	В	Pass
Signal line	/	А	В	Pass

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

4.5. Radio frequency common mode


PERFORMANCE CRITERION

Standard	Criterion
EN 50024/EN 55035/EN 61000-4-6	Criteria A

TEST LEVEL

Test frequency range: 150 kHz~80MHz Level: 0.15MHz~10MHz 3V r.m.s 10MHz~30MHz 3V to 1V r.m.s 30MHz~80MHz 1V r.m.s Modulation type: Amplitude Modulation, 80% depth Modulated signal: 1 KHz sinusoidal audio signal Frequency increment step: 1% Dwell time: 3 seconds

TEST CONFIGURATION

TEST PROCEDURE

Please refer to EN 61000-4-6 for the measurement methods.

管理委员会

可监

中国国家认证认

TEST MODE

Please refer to the Clause 2.4

TEST RESULTS

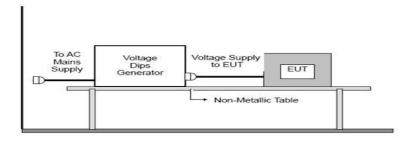
Test mode:	All		
Injected Position	Observations (Performance Criterion)	Criteria Level	Result
AC Mains	А	А	Pass
Signal Port	А	А	Pass

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and

4.6. Voltage dips and interruptions


PERFORMANCE CRITERION

Standard	Criterion	
EN 50024/EN 55035/EN 61000-4-11	Criteria B for voltage dip	
	Criteria C for voltage interruption	

TEST LEVEL

0% of VT (Supply Voltage) for 0.5 period 70% of VT (Supply Voltage) for 25 period 0% of VT (Supply Voltage) for 250 period Dip quantity: 3, interval time: 10 seconds

TEST CONFIGURATION

TEST PROCEDURE

Please refer to EN 61000-4-11 for the measurement methods.

管理委员会

可监

中国国家认

TEST MODE

Please refer to the Clause 2.4

TEST RESULTS

Test mode: 1, 2, 3					
Test Voltage %	Duration periods	Phase angle	Observations (Performance Criterion)	Criteria Level	Result
0	0.5	0°, 45, 90°, 135°, 180°, 225°, 270°, 315°	А	В	Pass
70	25	0°, 45, 90°, 135°, 180°, 225°, 270°, 315°	А	В	Pass
0	250	0°, 45, 90°, 135°, 180°, 225°, 270°, 315°	С	С	Pass

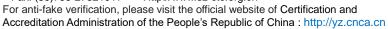
CTC Laboratories, Inc.

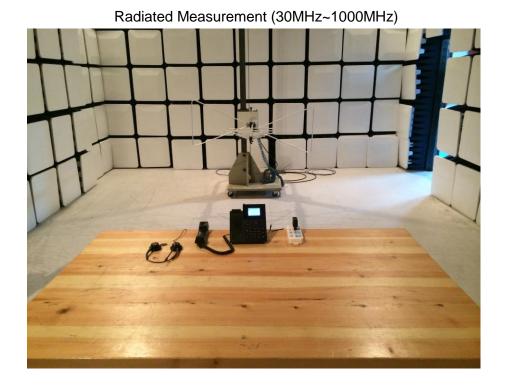
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Fax: (86)/55-2/521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Conducted Emission (AC Mains)

Conducted Emission (Signal Mains)



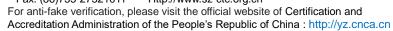

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

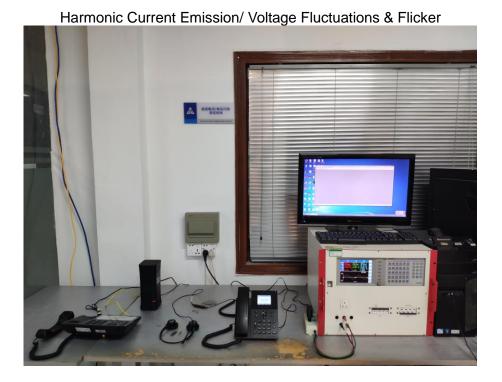
可监

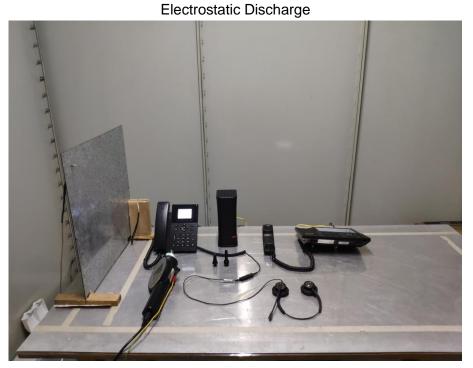
管理委员会

Radiated Measurement (1000~6000MHz)



CTC Laboratories, Inc.


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会


可监督管理委员会

ΞŇ

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

ΞŇ

RF electromagnetic field

Injected Current

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

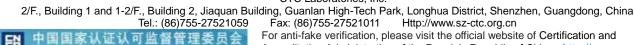
Electric Fast Transients

Surges

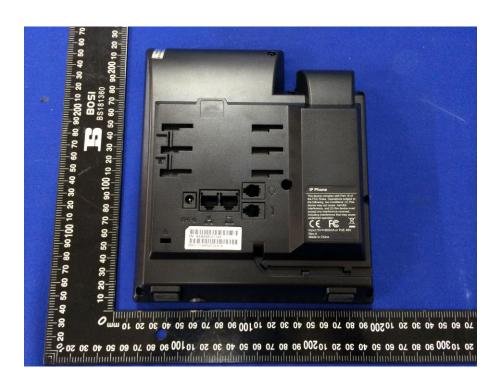
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

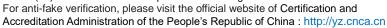
Volt. Interruptions/Volt. Dips

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 日目家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



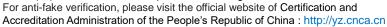
6. PHOTOGRAPHS OF EUT CONSTRUCTIONAL





2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

可监督管理委员会



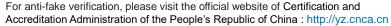
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 可监 **警管理委员会**

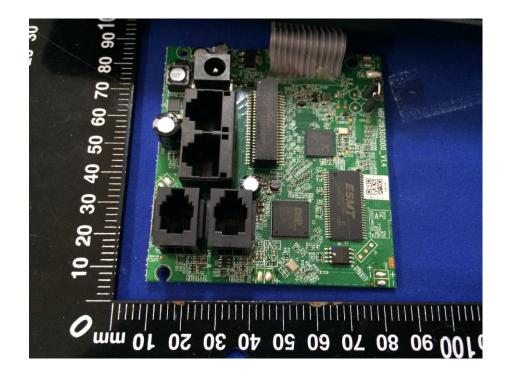
2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

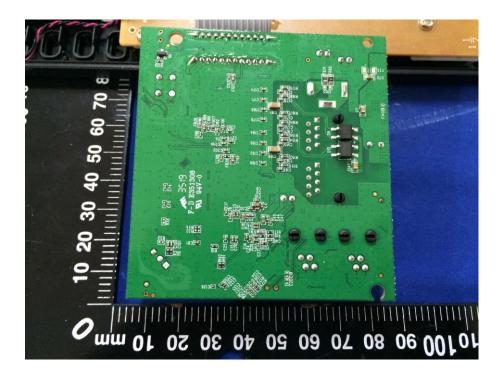
For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 日目家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Internal Photographs

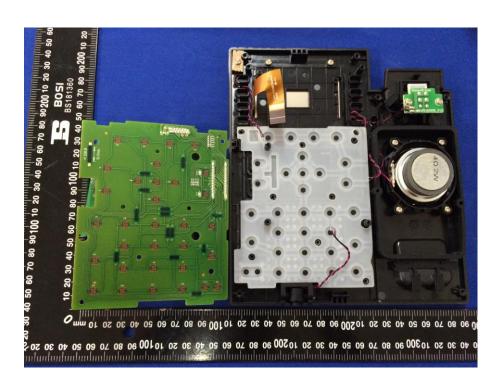

CTC Laboratories, Inc.

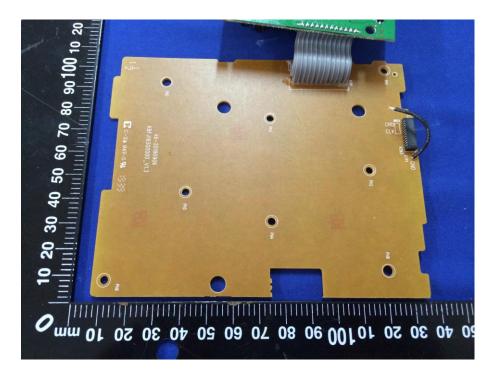

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会


可监督管理委员会

中国

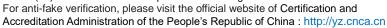
٢N


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

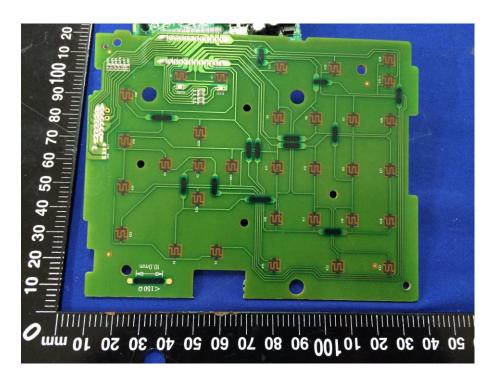

可监

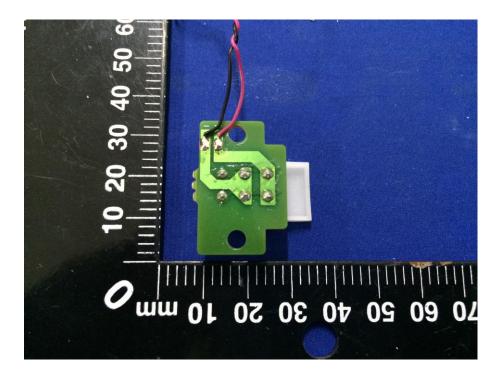
٢N

督管理委员会

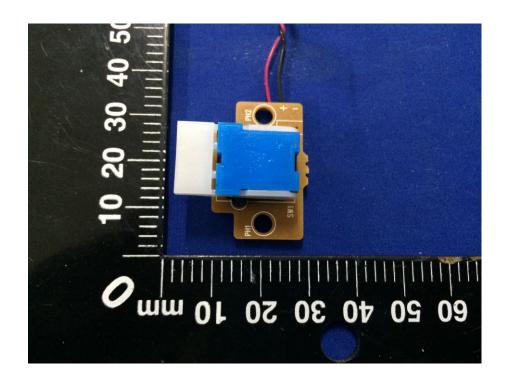


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn


督管理委员会


可监

K


CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

可监

「行理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

####