

CTC Laboratories, Inc.

Jason Chen

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-0755-27521059 Fax: +86-0755-27521011

TEST REPORT

Report No. CTC20231123E

Applicant XonTel Technology Trd. Co. W.L.L

Address------ Office 21 - Justice Tower - Ali Al Salem St. - Qibla - Kuwait City -

State Of Kuwait

Manufacturer----: XonTel Technology Trd. Co. W.L.L

Address------ Office 21 - Justice Tower - Ali Al Salem St. - Qibla - Kuwait City -

State Of Kuwait

 Product Name.......
 IP-Phone

 Trade Mark......
 XonTel

 Model/Type reference......
 XT-09P

Listed Model(s) /

Standard----:: EN 55032: 2015 + A11: 2020 + A1: 2020

EN 55035: 2017 + A11: 2020 EN IEC 61000-3-2: 2019 + A1:2021

EN 61000-3-3:2013+A1:2019+A2:2021+AC:2022

Date of receipt of test sample...: May. 16, 2023

Date of testing...... May. 18, 2023 to May. 22, 2023

Date of issue...... May. 30, 2023

Result..... PASS

Compiled by:

(Printed name+signature) Jason Chen

Supervised by:

(Printed name+signature) Eric Zhang

Approved by:

(Printed name+signature) Totti Zhao

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page 2 of 58

1	TE	EST SUMMARY	3
	1.1	TEST STANDARDS	3
	1.2	REPORT VERSION	
	1.3	TEST DESCRIPTION	4
	1.4	TEST FACILITY	5
	1.5	MEASUREMENT UNCERTAINTY	5
	1.6	ENVIRONMENTAL CONDITIONS	6
2	GI	ENERAL INFORMATION	7
	2.1	CLIENT INFORMATION	7
	2.2	GENERAL DESCRIPTION OF EUT	7
	2.3	ACCESSORY EQUIPMENT INFORMATION	
	2.4	DESCRIPTION OF TEST MODES	8
	2.5	MEASUREMENT INSTRUMENTS LIST	9
3	EN	MC EMISSION TEST	11
	3.1	CONDUCTED EMISSION MEASUREMENT	11
	3.2	RADIATED EMISSION MEASUREMENT	
	3.3	HARMONIC CURRENT EMISSIONS	28
	3.4	VOLTAGE CHANGES, VOLTAGE FLUCTUATIONS AND FLICKER	30
4	EN	MC IMMUNITY TEST	32
	4.1	Performance criteria	32
	4.2	ELECTROSTATIC DISCHARGE	33
	4.3	RADIO FREQUENCY ELECTROMAGNETIC FIELD	36
	4.4	ELECTRICAL FAST TRANSIENT / BURST	38
	4.5	Surge	41
	4.6	RADIO FREQUENCY CONTINUOUS CONDUCTED	43
	4.7	VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS	45
5	EU	UT TEST PHOTO	47

PHOTOGRAPHS OF EUT......54

TEST SUMMARY

1.1 Test standards

The tests were performed according to following standards:

EN 55032: 2015 + A11: 2020 + A1: 2020 - Electromagnetic compatibility of multimedia equipment-Emission Requirements

EN 55035: 2017 + A11: 2020 - Electromagnetic compatibility of multimedia equipment-Immunity requirements EN IEC 61000-3-2: 2019 + A1: 2021 - Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤ 16 A per phase)

EN 61000-3-3: 2013 + A1: 2019 + A2: 2021 + AC: 2022 – Electromagnetic compatibility (EMC) - Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connection

1.2 Report version

Revised No.	Date of issue	Description
01	May. 30, 2023	Original

cert

1.3 Test description

Emission					
Test Item	Standard Requirement	Result	Test Engineer	Remark	
Conducted emission(AC Mains)		Pass	Jason Chen		
Conducted emission(Signal Port)	EN 55032: 2015 + A11:	Pass	Jason Chen		
Conducted emission(TV Port)	2020 + A1: 2020	N/A	N/A	NOTE(1)	
Radiated emission		Pass	Jason Chen		
Harmonic current emissions	EN IEC 61000-3-2: 2019 + A1: 2021	N/A	N/A	NOTE(4)	
Voltage changes, voltage fluctuations and flicker	EN 61000-3-3: 2013 + A1: 2019 + A2: 2021 + AC: 2022	Pass	Jason Chen		
	Immunity				
Test Item	Standard Requirement EN 55035: 2017 + A11: 2020	Result	Test Engineer	Remark	
Electrostatic discharge	EN 61000-4-2:2009	Pass	Jason Chen		
Radio frequency electromagnetic field	EN IEC 61000-4-3:2020	Pass	Jason Chen		
Electrical fast transient / burst	EN 61000-4-4:2012	Pass	Jason Chen		
Surge	EN 61000-4-5:2014+A1:2017	Pass	Jason Chen		
Radio frequency continuous conducted	EN 61000-4-6:2014+AC:2015	Pass	Jason Chen		
Power frequency magnetic fields	EN 61000-4-8:2010	N/A	N/A	NOTE(2)	
Voltage dips, short interruptions and voltage variations	EN IEC 61000-4-11:2020	Pass	Jason Chen		

NOTE:

- (1)"N/A" denotes test is not applicable in this Test Report.
- (2) No magnetic sensitive components, so not applicable.
- (3) The measurement uncertainty is not included in the test result.
- (4) The power consumption of EUT is less than 75W and no Limits apply.

CTC Laboratories, Inc.

1.4 Test facility

Address of the report laboratory

CTC Laboratories, Inc.

Address: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for t he Competence of Testing and Calibration Laboratories and any additional program requirements in the id entified field of testing.

Industry Canada (Registration No.: 9783A,CAB Identifier:CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017

1.5 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for CTC Laboratories, Inc.

Test	Measurement Frequency Range	U (dB)	NOTE
Conducted Emission	9kHz ~ 30MHz	3.08	Main Power Port
Conducted Emission	150kHz ~ 30MHz	4.26	Telecommunication
Power disturbance	30MHz ~ 300MHz	2.38	Clamp
Conducted Emission	30MHz ~ 2150MHz	4.2	Antenna Port
Radiated Emission	30MHz ~ 1000MHz	4.51	3m chamber 2
Radiated Emission	1GHz ~ 18GHz	5.84	3m chamber 2
Radiated Emission	30MHz ~ 1000MHz	4.52	10m chamber
Radiated Emission	30MHz ~ 1000MHz	4.5	3m chamber 3
Radiated Emission	1GHz ~ 18GHz	5.7	3m chamber 3

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature	21 °C ~ 25 °C	
Lative Humidity	44 % ~ 53 %	
Air Pressure	101 kPa ~ 102 kPa	

GENERAL INFORMATION

2.1 Client Information

Applicant	VanTal Tachnology Trd. Co. W.L.I.	
Applicant:	XonTel Technology Trd. Co. W.L.L	
Address:	Office 21 - Justice Tower - Ali Al Salem St Qibla - Kuwait City - State Of Kuwait	
Manufacturer:	XonTel Technology Trd. Co. W.L.L	
Address:	Office 21 - Justice Tower - Ali Al Salem St Qibla - Kuwait City - State Of Kuwait	
Factory:		
Address:		

2.2 General Description of EUT

Product Name	IP-Phone		
Trade Mark	XonTel		
Model/Type reference	XT-09P		
Listed Model(s)	1		
Model Difference	1		
Product Description	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as both an ITE/Computing Device(Class B). More details of EUT technical specification, please refer to the User's Manual.		
Power Source	Input: 5V600mA or POE 48V		
Hardware version	/		
Software version	/		
Remark:	The maximum operating frequency of EUT is greater than 108MHz.		
Sample ID:	CTC230512-049-1-S0001		

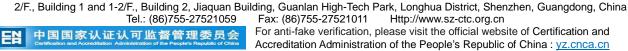
2.3 Accessory equipment information

Equipment Information						
Name	Mfr/Brand	Model/Type No.	S/N	Note		
Switching Power Adaptor	CHENZHOU FRECOM ELECTRONICS CO,LTD.	F12W8-050200SPAV	/	AE		
POE power adapter	/	GQ24-480035-ACC	/	AE		
Router	ZTE	E8820 V3	/	AE		
Headset	Fanvil	HT202	/	AE		
Laptop	Lenovo	ThinkBook 14 G4 IAP	/	AE		
Cable Information	Cable Information					
Name	Shielded Type	Ferrite Core	Length	Note		
Lan Cable	NO	NO	1.2M	/		

Note:

- The support equipment was authorized by Declaration of Confirmation. (1)
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core". (3)

2.4 Description of test modes


As the function of the EUT, test mode selected to test as below to conform this standard.

Test mode	Description	Test Voltage
1	Ding Lon LID Communicate	DC 5V (AC/DC Adapter)
2	Ping Lan + IP Communicate	DC 48V (POE Supply)

Pre-scan above all test mode and voltage, found below test mode and voltage which it was worse case mode. The test voltage is from the power supply.

Test item	Test mode
Conducted emission	1.2
Radiated emission	1.2
Voltage changes, voltage fluctuations and flicker	1
Electrostatic discharge	1.2
Radio frequency electromagnetic field	1.2
Electrical fast transient / burst	1.2
Surges	1.2
Radio frequency continuous conducted	1.2
Voltage dips, short interruptions and voltage variations	1

CTC Laboratories, Inc.

2.5 Measurement instruments list

	Conducted emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until		
	LISN	R&S	ENV216	101112	Dec. 16, 2023		
	LISN	R&S	ENV216	101113	Dec. 16, 2023		
	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023		
	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-00 46	Dec. 16, 2023		
\square	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-00 46	Dec. 16, 2023		
$\overline{\mathbf{A}}$	Test Software	R&S	EMC32	6.10.10	/		

	Radiated emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until		
V	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Dec. 07, 2024		
	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-648	Dec. 07, 2024		
$\overline{\mathbf{A}}$	Pre-Amplifier	SONOMA	310	186194	Dec. 16, 2023		
V	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 16, 2023		
$\overline{\mathbf{A}}$	Test Receiver	R&S	ESCI7	100967	Dec. 16, 2023		
$\overline{\mathbf{A}}$	3m chamber 2	Frankonia	EE025	/	Oct. 23, 2024		
V	Test Software	FARA	EZ-EMC	FA-03A2	/		

	Harmonic current emissions & Voltage fluctuations and flicker								
Item	em Test Equipment Manufacturer Model No. Serial No. Calibrated L								
V	Universal Power Analyzer	Voltech	PM6000	200006700723	Dec. 21, 2023				
V	Programmable AC Power Source	Mtoni	PHF1530	MTPS001	Dec. 16, 2023				
$\overline{\Delta}$									

	Electrostatic discharge								
Item	Item Test Equipment Manufacturer Model No. Serial No. Calibrated Until								

	Radio frequency electromagnetic field								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until				
Ø	High Gain Log-Periodic Antenna	R&S	HL046E	100037	Dec. 16, 2023				
V	Stacked LogPer. Antenna	Schwarzbeck	STLP 9149	9149-658	Dec. 16, 2023				
V	Power Amplifier	BONN ELEKTRONIK	BLWA0830-160/1 00/40D	76788	Dec. 16, 2023				
$\overline{\mathbf{A}}$	Power Amplifier	Micotop	MPA-3-6G-50	MPA1706258	Dec. 16, 2023				
V	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 16, 2023				
V	Test Software	AUDIX	12	V5	/				

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

中国国家认证认可监督管理委员会

For anti-fake verification, please visit the official website of Certification and

	Electrical fast transient / burst								
Item	Item Test Equipment Manufacturer Model No. Serial No. Calibrated								
V	Electrical fast transient generator	3ctest	EFT-4003G	EC0471140	Dec. 16, 2023				
V	Coupling/Decoupling Clamp	3ctest	EFTC	EC0441141	Dec. 16, 2023				

	Surges								
Item	Test Equipment	Serial No.	Calibrated Until						
	Surge generator	3ctest	SG-5006G	EC5581149	Dec. 16, 2023				
	Surge CDN	3ctest	SGN-20G	EC5551128	Dec. 16, 2023				
Ø	Network Surge Generator	3ctest	CWS 600T	ES0311603	Dec. 16, 2023				
	Network Surge CDN	3ctest	CDN 405T8A1	ES2731605	Dec. 16, 2023				

	Radio frequency continuous conducted								
Item	Test Equipment	st Equipment Manufacturer Model No. Serial No.			Calibrated Until				
$\overline{\mathbf{A}}$	C/S Generator	SCHLODER	SCHLODER CDG 6000 126A1266						
V	Coupling/Decoupling Network	SCHLODER	CDN M2+3	A2210258	Dec. 16, 2023				
V	Coupling/Decoupling Network	TESEQ GmbH	CDN T8-10	45011	Dec. 16, 2023				
V	6dB Attenuator	N/A	100W/6dB	N/A	Dec. 16, 2023				
V	Test Software	HUBERT	IECVEN61000- 4-6	V1.5	/				

	Voltage dips, short interruptions and voltage variations								
Item	m Test Equipment Manufacturer Model No. Serial No. Calibrated Unt								
Ø	Voltage dips and up generator	3ctest	VDG-1105G	EC0171116	Dec. 16, 2023				

3 EMC EMISSION TEST

3.1 Conducted emission measurement

LIMIT

Please refer to CENELEC EN 55032 Annex A Table A.8 to Table A.13.

Power Line Conducted Emission (Frequency Range 150kHz-30MHz)

FREQUENCY (MHz)	Class	A (dBuV)	Class B (dBuV)		
FREQUENCT (WITZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.5 - 5	73.00	60.00	56.00	46.00	
5 - 30	73.00	60.00	60.00	50.00	

Telecommunication Port Conducted Emission (Frequency Range 150kHz-30MHz)

	,				
FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
FREQUENCT (MIDZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	97 - 87*	84 - 74*	84 - 74*	74 - 64*	
0.5 - 30	87	74	74	64	

Note:

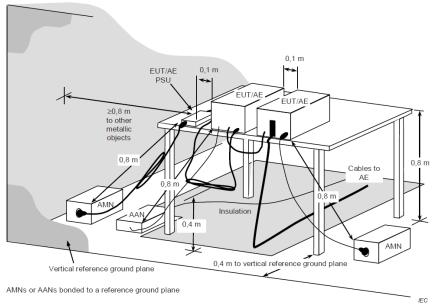
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

TEST PROCEDURE

Please refer to CENELEC EN 55032 Annex B and Annex C, and the EUT exercised in accordance with Annex D.

TEST MODE

Please refer to the Clause 2.4.



TEST SETUP

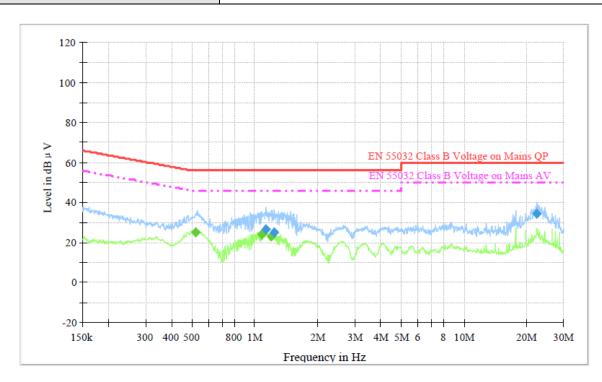
A) For AC mains power ports and asymmetric mode conducted emissions.

Page 12 of 58

The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be \ge 0.8 m.

Environmental conditions

Normal Temperature:	25 °C	Lative Humidity:	52 %	Air Pressure:	101 kPa
---------------------	-------	------------------	------	---------------	---------


CTC Laboratories, Inc.

Test Mode: Mode 1

Phase: L

Final Measurement Detector 1

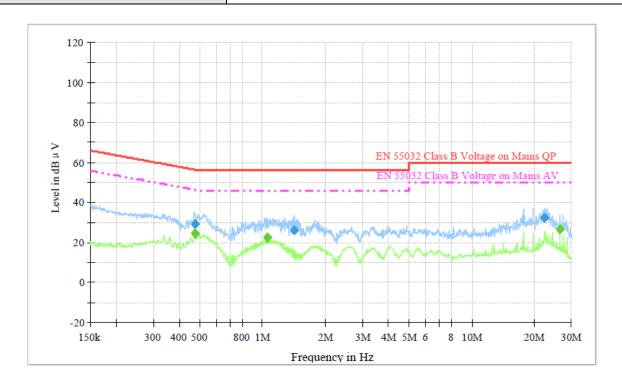
Frequency (MHz)	QuasiPeak (dB µ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
1.130710	26.5	1000.00	9.000	On	L1	9.7	29.5	56.0	
1.239440	25.1	1000.00	9.000	On	L1	9.7	30.9	56.0	
22.395840	34.4	1000.00	9.000	On	L1	10.0	25.6	60.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.519130	25.1	1000.00	9.000	On	L1	9.7	20.9	46.0	
1.082130	24.0	1000.00	9.000	On	L1	9.7	22.0	46.0	
1.195700	23.3	1000.00	9.000	On	L1	9.7	22.7	46.0	

Note:

Factor = Insertion loss of LISN + Cable Loss


Limit = Limit stated in standard

Margin = Limit (dBuV) – Result (dBuV)

Test Mode : Mode 1
Phase : N

Report No.: CTC20231123E

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dB µ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.471700	29.2	1000.00	9.000	On	N	10.0	27.3	56.5	
1.419620	26.2	1000.00	9.000	On	N	10.0	29.8	56.0	
22.395840	32.3	1000.00	9.000	On	N	10.0	27.7	60.0	

Final Measurement Detector 2

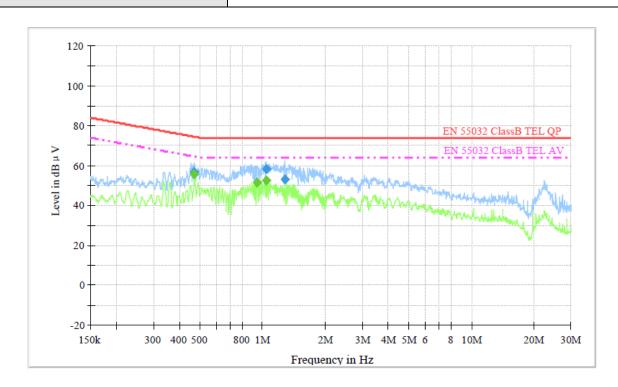
	Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
ſ	0.473590	24.7	1000.00	9.000	On	N	10.0	21.8	46.5	
ſ	1.056520	22.7	1000.00	9.000	On	N	10.0	23.3	46.0	
	26.483990	26.5	1000.00	9.000	On	N	10.0	23.5	50.0	

Note:

Factor = Insertion loss of LISN + Cable Loss

Limit = Limit stated in standard

Margin = Limit (dBuV) - Result (dBuV)



CTC Laboratories, Inc.

Test Mode: Mode 1 LAN(IP port) Phase:

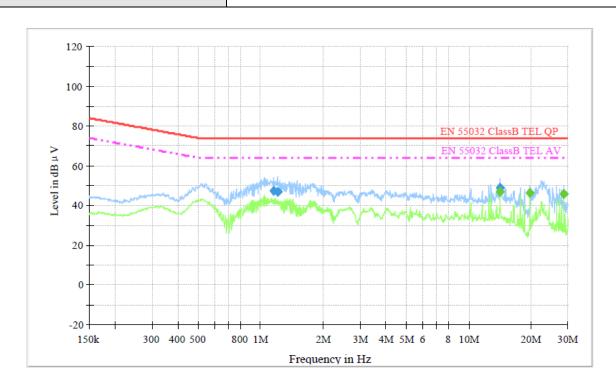
Report No.: CTC20231123E

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dB µ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.467950	56.9	1000.00	9.000	On	LAN	10.0	17.7	74.6	
1.035640	58.2	1000.00	9.000	On	LAN	10.0	15.8	74.0	
1.274560	53.3	1000.00	9.000	On	LAN	10.0	20.8	74.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dB µ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.469820	55.6	1000.00	9.000	On	LAN	10.0	8.9	64.5	
0.941020	51.5	1000.00	9.000	On	LAN	10.0	12.5	64.0	
1.035640	52.5	1000.00	9.000	On	LAN	10.0	11.5	64.0	


Note:

Factor = Insertion loss of LISN + Cable Loss Limit = Limit stated in standard Margin = Limit (dBuV) - Result (dBuV)

CTC Laboratories, Inc.

Test Mode:	Mode 1
Phase :	LAN(Laptop port)

Final Measurement Detector 1

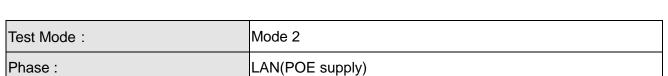
Frequency (MHz)	QuasiPeak (dB µ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
1.153500	47.4	1000.00	9.000	On	LAN	10.0	26.6	74.0	
1.200480	46.7	1000.00	9.000	On	LAN	10.0	27.4	74.0	
14.151110	48.9	1000.00	9.000	On	LAN	10.0	25.1	74.0	

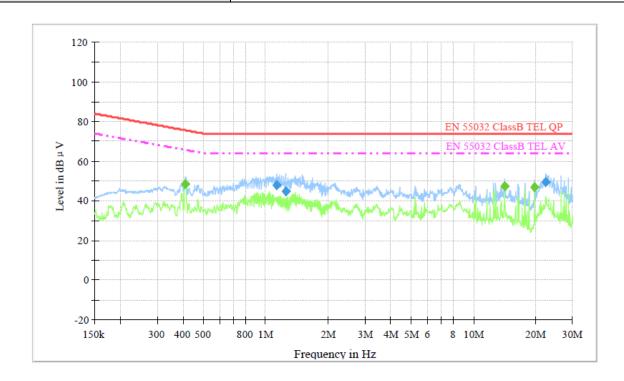
Final Measurement Detector 2

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
14.151110	46.9	1000.00	9.000	On	LAN	10.0	17.1	64.0	
19.710090	46.4	1000.00	9.000	On	LAN	10.0	17.6	64.0	
28.685180	45.7	1000.00	9.000	On	LAN	10.0	18.3	64.0	

Note:

Factor = Insertion loss of LISN + Cable Loss


Limit = Limit stated in standard


Margin = Limit (dBuV) - Result (dBuV)

a to

CTC Laboratories, Inc.

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
1.130710	47.7	1000.00	9.000	On	LAN	10.0	26.3	74.0	
1.249380	44.8	1000.00	9.000	On	LAN	10.0	29.2	74.0	
22.395840	49.5	1000.00	9.000	On	LAN	10.0	24.5	74.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.410190	48.6	1000.00	9.000	On	LAN	10.0	17.0	65.6	
14.151110	47.5	1000.00	9.000	On	LAN	10.0	16.5	64.0	
19.710090	46.8	1000.00	9.000	On	LAN	10.0	17.2	64.0	

Note:

Factor = Insertion loss of LISN + Cable Loss

Limit = Limit stated in standard

Margin = Limit (dBuV) - Result (dBuV)

CTC Laboratories, Inc.

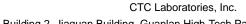
3.2 Radiated emission measurement

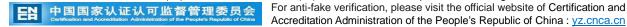
<u>LIMIT</u>

Please refer to CENELEC EN 55032 Annex A Table A.2 to Table A.7.

EDEOLIENCY (MHz)	Class A d	BuV/m	Class B dBuV/m			
FREQUENCY (MHz)	(at 10m)		(at 10m)	(at 3m)		
30 – 230	40	50	30	40		
230 – 1000	47	57	37	47		

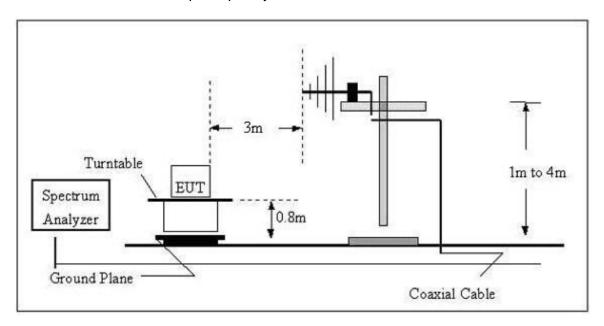
FREQUENCY (MHz)	Class A (at 3r	m) dBuV/m	Class B (at 3m) dBuV/m			
FREQUENCY (MINZ)	Peak Average		Peak	Average		
1000 - 6000	80	60	74	54		

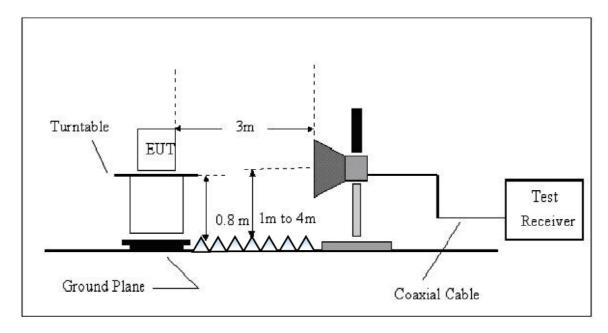

TEST MODE


Please refer to the Clause 2.4.

Environmental conditions

Normal Temperature: 2	21 °C	Lative Humidity:	47 %	Air Pressure:	101 kPa
-----------------------	-------	------------------	------	---------------	---------





A. Radiated Emission test Set-up Frequency Below 1 GHz.

B. Radiated Emission test Set-up Frequency Above 1 GHz.

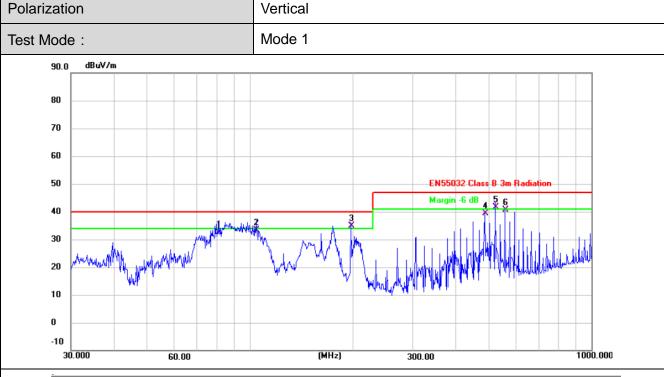
TEST RESULTS

For anti-fake verification, please visit the official website of Certification and

Below 1GHz

Polarization	Horizontal				
Test Mode:	Mode 1				
90.0 dBuV/m					
80					
70					
60					
50	EN55032 Class B 3m Radiation				
40	Margin -6 dB 5 5 5				
30					
20					
10 marker and granted deployment for the forest of the second of the sec	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
0					
-10 30.000 60.00	(MHz) 300.00 1000.000				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	176.2686	46.00	-18.46	27.54	40.00	-12.46	QP
2 *	197.8928	54.34	-20.24	34.10	40.00	-5.90	QP
3	209.3129	50.28	-20.08	30.20	40.00	-9.80	QP
4	234.1683	48.06	-19.18	28.88	47.00	-18.12	QP
5	306.7537	50.69	-17.01	33.68	47.00	-13.32	QP
6	487.3150	47.96	-12.85	35.11	47.00	-11.89	QP


Remarks:

- 1. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-amplifier Factor
- 2. Margin value = Level Limit value

CTC Laboratories, Inc.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	81.2117	54.58	-21.98	32.60	40.00	-7.40	QP
2	104.5361	53.84	-20.54	33.30	40.00	-6.70	QP
3 *	197.8928	55.04	-20.24	34.80	40.00	-5.20	QP
4	487.3151	52.15	-12.85	39.30	47.00	-7.70	QP
5!	522.7180	53.92	-12.22	41.70	47.00	-5.30	QP
6	558.7302	52.15	-11.55	40.60	47.00	-6.40	QP

Remarks:

- 1. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-amplifier Factor
- 2. Margin value = Level Limit value

Cert

Polarization	Horizontal
Test Mode :	Mode 2
90.0 dBuV/m	
80	
70	
60	
50	EN55032-Class B-3m Radiation
40	Margin -6 dB
30	
20	The state of the s
10 many or has many or hard the hard for the	Many My My Many May May May May May May May May May Ma
0	
-10 30.000 60.00	(MHz) 300.00 1000.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	197.8928	50.92	-20.24	30.68	40.00	-9.32	QP
2	234.1683	47.15	-19.18	27.97	47.00	-19.03	QP
3	306.7537	50.87	-17.01	33.86	47.00	-13.14	QP
4	451.1350	46.98	-13.39	33.59	47.00	-13.41	QP
5	487.3150	48.34	-12.85	35.49	47.00	-11.51	QP
6	522.7179	48.00	-12.22	35.78	47.00	-11.22	QP

Remarks:

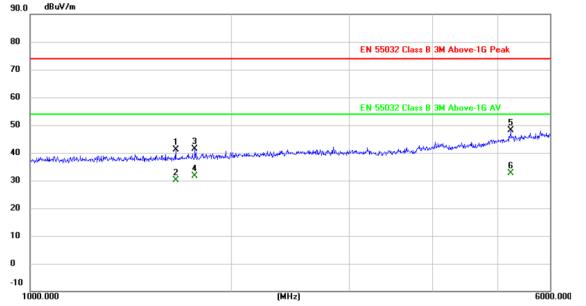
- 1. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-amplifier Factor
- 2. Margin value = Level Limit value

Polarization	on						Vertical											
Test Mode	e :						Мо	de 2										
90.0	dBuV/	m																
80																		
70																	+	
60																		
50													032 Clas	_	Radial	ion		
40												Margii	n -6 dB	5 (6			
30		.1		2 () <mark>X</mark> (,			Liui				П		
20	hyphylldligh		الر الأربان	verir Verir		\ J.	nk.	L.WHA	المعمدولة			In Journal	MA	rmWJ,	Щ		اللاناليلول	
10	,	W	mid/u		Ŋ.	MAN	a.dl/ ^M / _k .	ilean i	יטעאר יויקו	repair Ly								
0																		
-10 30	0.000		61	0.00					(MHz)		30	0.00					1000	0.000
						_				_		1		_	_	_		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	40.9881	40.97	-17.43	23.54	40.00	-16.46	QP
2	66.2662	47.32	-19.78	27.54	40.00	-12.46	QP
3	197.8928	52.55	-20.24	32.31	40.00	-7.69	QP
4	451.1350	50.07	-13.39	36.68	47.00	-10.32	QP
5 *	522.7180	53.62	-12.22	41.40	47.00	-5.60	QP
6	595.1329	51.61	-10.80	40.81	47.00	-6.19	QP

Remarks:

- 1. $Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) Pre-amplifier\ Factor$
- 2. Margin value = Level Limit value



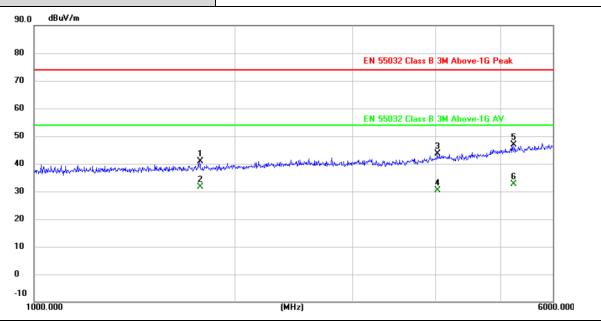
For anti-fake verification, please visit the official website of Certification and

Above 1GHz

Polarization	Horizontal
Test Mode:	Mode 1

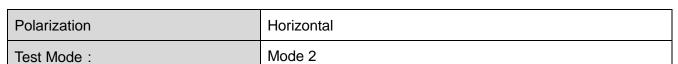
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1651.514	52.29	-11.24	41.05	74.00	-32.95	peak
2	1651.514	41.36	-11.24	30.12	54.00	-23.88	AVG
3	1764.712	52.38	-10.91	41.47	74.00	-32.53	peak
4	1764.712	42.48	-10.91	31.57	54.00	-22.43	AVG
5	5236.146	49.14	-0.94	48.20	74.00	-25.80	peak
6 *	5236.146	33.48	-0.94	32.54	54.00	-21.46	AVG

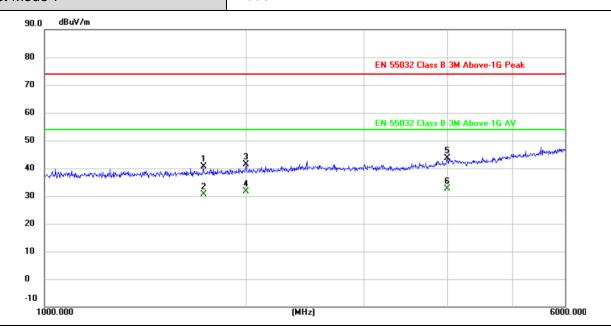
Remarks:


- 1. $Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) Pre-amplifier\ Factor$
- 2. Margin value = Level Limit value

CTC Laboratories, Inc.

Polarization Vertical Mode 1 Test Mode:



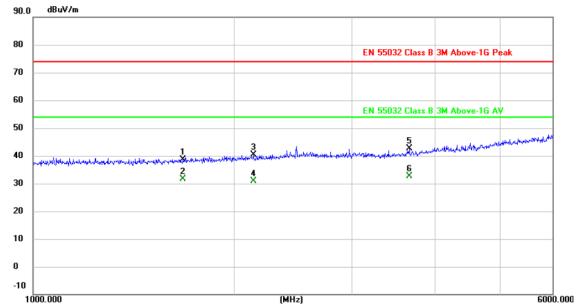

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1771.048	51.79	-10.88	40.91	74.00	-33.09	peak
2	1771.048	42.45	-10.88	31.57	54.00	-22.43	AVG
3	4023.681	48.01	-4.37	43.64	74.00	-30.36	peak
4	4023.681	34.84	-4.37	30.47	54.00	-23.53	AVG
5	5226.773	47.85	-0.97	46.88	74.00	-27.12	peak
6 *	5226.773	33.51	-0.97	32.54	54.00	-21.46	AVG

Remarks:

- 1. $Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) Pre-amplifier\ Factor$
- 2. Margin value = Level Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1727.174	51.67	-11.02	40.65	74.00	-33.35	peak
2	1727.174	41.56	-11.02	30.54	54.00	-23.46	AVG
3	2000.527	50.85	-9.40	41.45	74.00	-32.55	peak
4	2000.527	40.97	-9.40	31.57	54.00	-22.43	AVG
5	4002.110	48.14	-4.40	43.74	74.00	-30.26	peak
6 *	4002.110	37.14	-4.40	32.74	54.00	-21.26	AVG

Remarks:


- 1. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-amplifier Factor
- 2. Margin value = Level Limit value

CTC Laboratories, Inc.

Polarization	Vertical
Test Mode :	Mode 2

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1675.358	49.89	-11.17	38.72	74.00	-35.28	peak
2	1675.358	42.91	-11.17	31.74	54.00	-22.26	AVG
3	2137.648	49.17	-8.81	40.36	74.00	-33.64	peak
4	2137.648	39.68	-8.81	30.87	54.00	-23.13	AVG
5	3659.161	48.61	-5.94	42.67	74.00	-31.33	peak
6 *	3659.161	38.51	-5.94	32.57	54.00	-21.43	AVG

Remarks:

- 1. Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-amplifier Factor
- 2. Margin value = Level Limit value

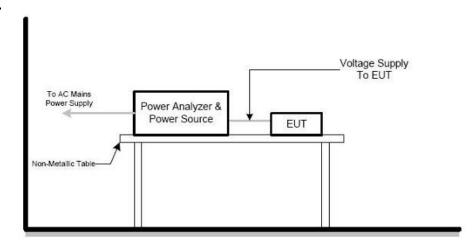
3.3 Harmonic current emissions

LIMIT

Please refer to the EN IEC 61000-3-2 Clause 7.

Limits for class A equipment

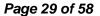
Harmonic times	Maximum permission harmonic current			
n	A			
Odd number harmonic				
3	2.30			
5	1.14			
7	0.77			
9	0.40			
11	0.33			
13	0.21			
15≤n≤39	0.15×15/n			
Even nun	nber harmonic			
2	1.08			
4	0.43			
6	0.30			
8≤n40	0.23×8/n			


TEST PROCEDURE

Please refer to EN IEC 61000-3-2 for the measurement methods.

TEST MODE

Please refer to the Clause 2.4.


TEST SETUP

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Environmental conditions

Normal Temperature: / Lative Humidity: / Air Pressure: /

TEST RESULTS

The power consumption of EUT is less than 75W and no Limits apply.

3.4 Voltage changes, voltage fluctuations and flicker

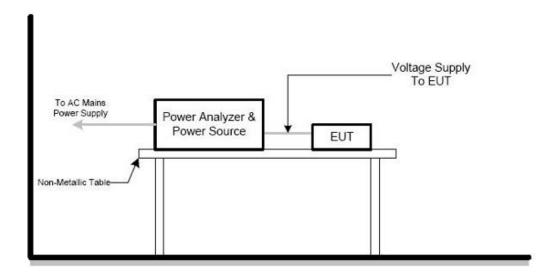
LIMIT

Please refer to EN 61000-3-3.

Tests	Limits
Pst	1.0
Plt	0.65
dc	3.3%
dmax	4%
d(t)	3.3%

TEST PROCEDURE

Please refer to EN61000-3-3 for the measurement methods.


TEST MODE

Please refer to the Clause 2.4.

Environmental conditions

Normal Tempe	rature: 23 °C	Lative Humidity:	48 %	Air Pressure:	101 kPa
--------------	---------------	------------------	------	---------------	---------

TEST SETUP

CTC Laboratories, Inc.

0

TEST RESULTS

Reading 1

0.344

Type of Test:	Flickermeter Test - Tal	ole			
Power Analyzer:	Voltech PM6000 SN: Channel(s):	200006700723 Firm	ware Version: v1.22.0	7RC6	
	1. SN: 090015502565, 28 Adjust	ted Date: 2 AUG 2013. 2. SN:	090015500533, 28 Adjusted Da	ate: 19 MAR 2010.	
	3. SN: 090015502345, 28 Adjus	ted Date: 21 JUN 2012. 4. SN	:None Adjusted Date:None		
	5. SN:None Adjusted Date:Non	e 6. SN:None Adjusted Dat	e:None		
	Shunt(s):				
	1. SN: 091024303183, 4 Adjuste	d Date: 8 AUG 2013. 2. SN: 0	091024302146, 4 Adjusted Date:	22 JUN 2012.	
	3. SN: 091024302144, 4 Adjuste	ed Date: 22 JUN 2012. 4. SN:	None Adjusted Date:None		
	5. SN:None Adjusted Date:None 6. SN:None Adjusted Date:None				
AC Source:	Mains / Manual Source				
	Notes:				
	Measurement method	- Voltage			
PASS					
	Pst	dc (%)	dmax (%)	Tmax(> 3.3%)(ms)	
Limit	1.000	3.300	4.000	500	

0.131

0.331

EMC IMMUNITY TEST

4.1 Performance criteria

According to **EN 55035** standard, the general performance criteria as following:

Criterion A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criterion B	After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test.
Criterion C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

4.2 Electrostatic discharge

PERFORMANCE CRITERION

Standard	Criterion
EN 55035/EN 61000-4-2	Criteria B

TEST LEVEL

Contact Discharge at: ±2kV, ±4kV;

Air Discharge at: ±2kV, ±4kV, ±8kV

TEST PROCEDURE

Please refer to EN 61000-4-2 for the measurement methods.

TEST MODE

Please refer to the Clause 2.4.

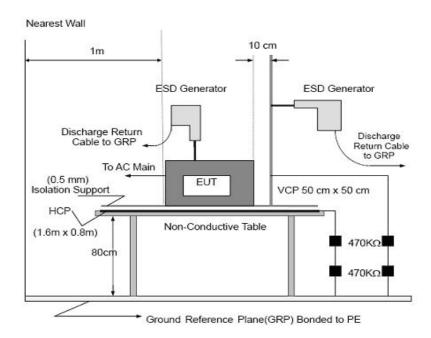
Contact Discharge:

The ESD generator is held perpendicular to the surface to which the discharge is applied and the tip of the discharge electrode touch the surface of EUT. Then turn the discharge switch. The generator is then re-triggered for a new single discharge and repeated at least 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

Air Discharge:

Air discharge is used where contact discharge can't be applied. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated at least 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

Indirect discharge for horizontal coupling plane:


At least 10 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT.

Indirect discharge for vertical coupling plane:

At least 10 single discharges shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

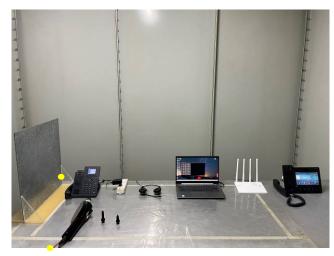
Page 34 of 58

Test result

Temperature	25℃	Humidity	48%	Atmospheric pressure	101KPa
Test Points	Test Voltage	Kind	Times	Results	Test Result
НСР	±2 KV ;	☐ Air ☐ Contact	⊠±10 □±25	A	⊠ Pass □ Fail
VCP	□±2 KV ; □±4 KV □±6 KV ; □±8 KV □±10 KV; □±15 KV	☐ Air ☐ Contact		A	☑ Pass☐ Fail
/	□±2 KV ; □±4 KV □±6 KV ; □±8 KV □±10 KV; □±15 KV	☐ Air ☐ Contact		/	☐ Pass ☐ Fail
Display module, Key, Gap, Voice tube, Lan port	 □±2 KV ; □±4 KV □±6 KV ; □±8 KV □±10 KV; □±15 KV □ 	⊠ Air □ Contact		B^1	☑ Pass☐ Fail
* Comment: No degradation was found					

1. There is noise during the test, which can be recovered automatically after the test Note:

The ancillary equipment's specification for an acceptable level of performance or degradation of performance during and/or after the ESD tests.


CTC Laboratories, Inc.

Description of Discharge Point

Contact discharge-Yellow, Air discharge-Red

For anti-fake verification, please visit the official website of Certification and

4.3 Radio frequency electromagnetic field

PERFORMANCE CRITERION

Standard	Criterion
EN 55035/EN IEC 61000-4-3	Criteria A

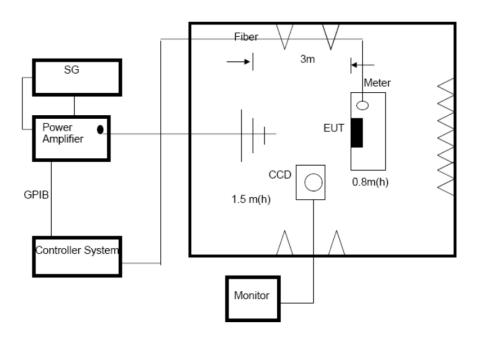
TEST LEVEL

Condition of Test	Remark
Frequency Range	80 MHz - 1000 MHz, 1800 MHz, 2600 MHz, 3500 MHz, 5000 MHz
Field Strength 3 V/m	
Modulation	1kHz Sine Wave, 80%, AM Modulation
Frequency Step	1 % of fundamental
Polarity of Antenna	Horizontal and Vertical
Test Distance	3 m
Antenna Height	1.5 m
Dwell Time	at least 3 seconds

TEST PROCEDURE

Please refer to EN 61000-4-3 for the measurement methods.

TEST MODE


Please refer to the Clause 2.4.

Report No.: CTC20231123E

TEST SETUP

TEST RESULTS

Temperature		24 ℃	Humidity	49%	Atmospheric	pressure	101kPa
EUT Position		Frequency range: 80-1000 MHz 1800 MHz, 2600 MHz, 3500 MHz, 5000 MHz Level: □3V/m □10V/m				Test Result	
			Horizontal	V	erical		
Front			A		A	☑ Pass☐ Fail	
Right			A		A	☐ Pass☐ Fail	
Back			A		A	☐ Pass☐ Fail	
Left			A		A	☐ Pass☐ Fail	
*Comment: No degrada Phenomen							

CTC Laboratories, Inc.

4.4 Electrical fast transient / burst

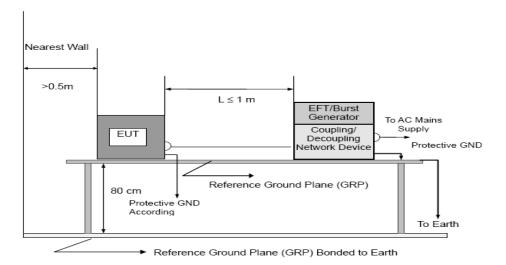
PERFORMANCE CRITERION

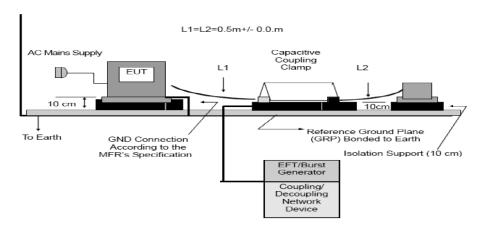
Standard	Criterion
EN 55035/EN 61000-4-4	Criteria B

TEST LEVEL

Test Voltage	Power Line: ±1 kV
Polarity	Positive & Negative & Ground
Test Voltage	Signal port: ±0.5 kV
Polarity	Positive & Negative
Impulse Frequency	5 kHz
Impulse Wave shape	5/50 ns
Burst Duration	15 ms
Burst Period	300 ms
Test Duration	Not less than 1 min

TEST PROCEDURE


Please refer to EN 61000-4-4 for the measurement methods.


TEST MODE

Please refer to the Clause 2.4.

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

TEST RESULTS

Temperature	24 ℃	Humidity 50% Atmospheric pressure		101KPa	
Test Ports		Test Voltage	Duration time	Result	Test Result
АС ро	ower port	□±0.5KV ⊠±1KV □±2KV	⊠120s □	A	⊠ Pass □ Fail
Signal port		⊠±0.5KV □±1KV □±2KV	⊠120s □	A	⊠ Pass □ Fail
	dation was found non Description				

PERFORMANCE CRITERION

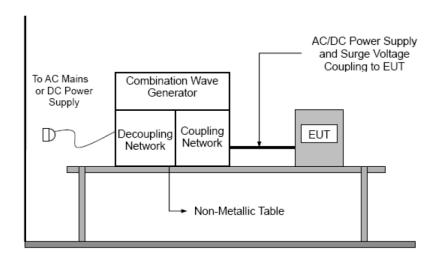
Standard	Criterion
EN 55035/EN 61000-4-5	Criteria B

TEST LEVEL

Wave-Shape	Combination Wave 1.2/50 us Open Circuit Voltage for input a.c. power ports
Test Voltage	Line to Line: ± 1 KV Line to Ground: ± 2 KV
Surge Input /Output	L-N; L-PE; N-PE
Generator Source	2 ohm between networks
Impedance	12 ohm between network and ground
Phase Angle	0°/90°/180°/270°
Wave-Shape	Combination Wave 10/700 us Open Circuit Voltage for signal ports
Test Voltage	Line to Ground: ± 1 KV
Telecommunication Ports	40 ohm between network and ground
Polarity	Positive/Negative
Pulse Repetition Rate	1 time / min. (maximum)
Number of Tests	5 positive and 5 negative at selected points

TEST PROCEDURE

Please refer to EN 61000-4-5 for the measurement methods.


TEST MODE

Please refer to the Clause 2.4.

TEST SETUP

TEST RESULTS

Temp	erature	24 ℃	Humi	idity		50%	Atmospheri	c pressure	101KPa
Tes	st Ports	Test Voltage	Resistor	Surge Wave	Times	Phase	Interval time	Phenome non	Test Result
40	L-N	⊠±1 KV □±2 KV □±4 KV □± KV	⊠2Ω □12Ω □	⊠1.2/50us □10/700us □	⊠ ±5	⊠0° ⊠90° ⊠180° ⊠270°	⊠60s	А	⊠ Pass □ Fail
AC Power port	L-PE	□±1 KV □±2 KV □±4 KV	□2Ω □12Ω □	□1.2/50us □10/700us □	□ ±5	□0° □90° □180° □270°	□60s □	/	☐ Pass ☐ Fail
	N-PE	□±1 KV □±2 KV □±4 KV	□2Ω □12Ω □	□1.2/50us □10/700us □	□ ±5	□0° □90° □180° □270°	□60s □	/	☐ Pass ☐ Fail
Signal	Lines-PE	□±0.5 KV ⊠±1 KV □±2 KV	⊠200/8+15Ω □	□1.2/50us □10/700us □	⊠ ±5	/	⊠60s	А	⊠ Pass □ Fail
port	Line-Line	□±0.5 KV □±1 KV □±2 KV	200/8+15Ω	□1.2/50us □10/700us □	□ ±5	/	□60s	/	☐ Pass ☐ Fail
* Comment: ☑ No degradation was found □ Phenomenon Description									

4.6 Radio frequency continuous conducted

PERFORMANCE CRITERION

Standard	Criterion
EN 55035/EN 61000-4-6	Criteria A

TEST LEVEL

Frequency Range:	0,15 to 10MHz
Field Strength:	3 V r.m.s.
Frequency Range:	10 MHz to 30MHz
Field Strength:	3 to 1 V r.m.s.
Frequency Range:	30 MHz to 80MHz
Field Strength:	1 V r.m.s.
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Dwell Time:	at least 3 seconds


TEST PROCEDURE

Please refer to EN 61000-4-6 for the measurement methods.

TEST MODE

Please refer to the Clause 2.4.

TEST SETUP

Temperature	24 ℃	Humidity	50%	Atmospheric pressure	101KPa
Test F	Ports	Frequency range	Test level (Vrms)	Phenomenon	Test Result
		□0.15MHz~80MHz □0.15MHz~230MHz	□1V □3V □	/	☐ Pass ☐ Fail
		☑0.15MHz~10MHz☐10MHz~30MHz☐30MHz~80MHz	□1V ⊠3V □	Α	⊠ Pass □ Fail
AC pow	er port	□0.15MHz~10MHz □10MHz~30MHz □30MHz~80MHz	□1V □3V ⊠3V-1V	Α	⊠ Pass □ Fail
		□0.15MHz~10MHz □10MHz~30MHz □30MHz~80MHz	⊠1V □3V □	Α	⊠ Pass □ Fail
			□1V ⊠3V □	А	⊠ Pass □ Fail
Signal	port	□0.15MHz~10MHz □10MHz~30MHz □30MHz~80MHz	□1V □3V ⊠3V-1V	А	⊠ Pass □ Fail
		□0.15MHz~10MHz □10MHz~30MHz □30MHz~80MHz	⊠1V □3V □	Α	⊠ Pass □ Fail
*Comment: ☑ No degradation was found ☑ Phenomenon Description					

6/01/2

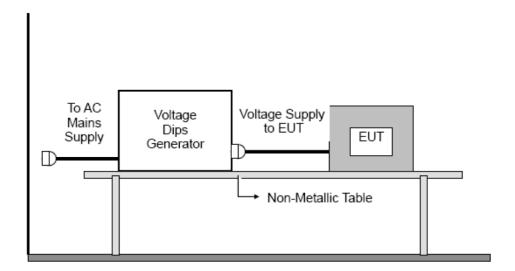
4.7 Voltage dips, short interruptions and voltage variations

PERFORMANCE CRITERION

Standard	Criterion
EN 55035/ EN IEC 61000-4-11	Criteria B for voltage dip
	Criteria C for voltage interruption

TEST LEVEL

Required Performance	B (For 0% Voltage Dips) C (For 70% Voltage Dips) C (For 0% Voltage Interruptions)
Test Duration Time	Minimum three test events in sequence
Interval between Event	Minimum ten seconds
Phase Angle	0°/45°/90°/135°/180°/225°/270°/315°
Test Cycle	3 times
Frequency	50Hz/60Hz


TEST PROCEDURE

Please refer to EN 61000-4-11 for the measurement methods.

TEST MODE

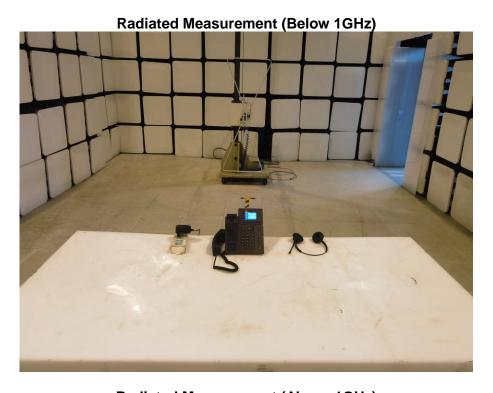
Please refer to the Clause 2.4.

TEST SETUP

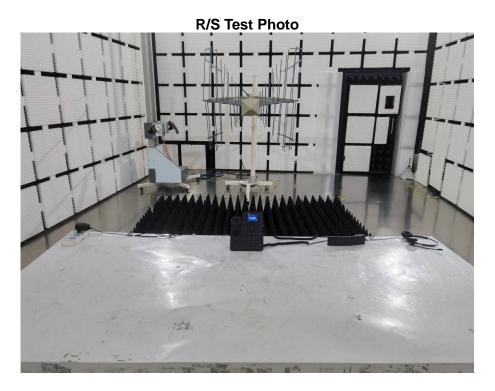
CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Temperature **24**℃ Humidity 50% Atmospheric pressure 101KPa Cycle Perform Voltage Reduction Test Result Results Criteria 50 (Hz) 60 (Hz) □ Pass % С Reduction 30 Α 25 30 ☐ Fail Voltage dips □ Pass Reduction 100 % В Α 0.5 0.5 ☐ Fail Voltage 🛛 Pass С Reduction 100 % С 250 300 interruption Fail Comment:

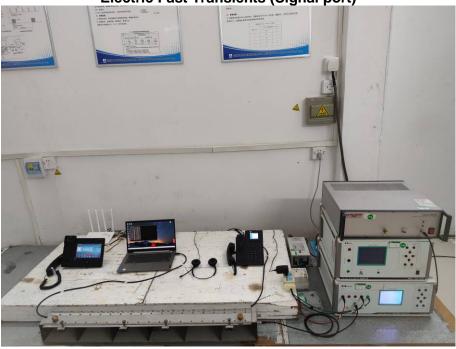
\times	No degradation was t	found
	Phenomenon Descrip	otion


Conducted Emission (AC Mains)

Conducted Emission (Signal Port)




ESD Test Photo



Electric Fast Transients (AC port)

010

Electric Fast Transients (Signal port)

Surges (AC port)

Surges (Signal port)

Radio frequency continuous conducted (AC port)

Radio frequency continuous conducted (Signal port)

Volt. Interruptions/ Volt. Dips Test Photo

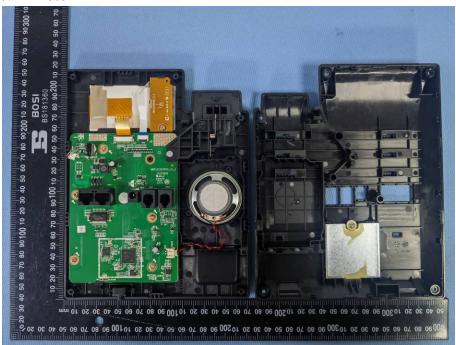
6 PHOTOGRAPHS OF EUT

1. Photo

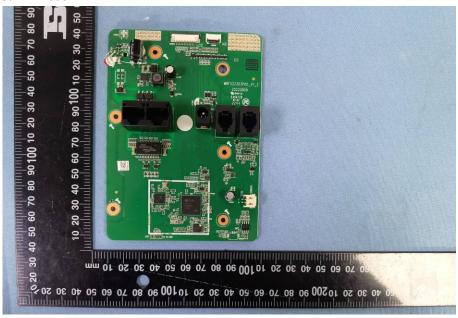
2. Photo

CTC Laboratories, Inc.

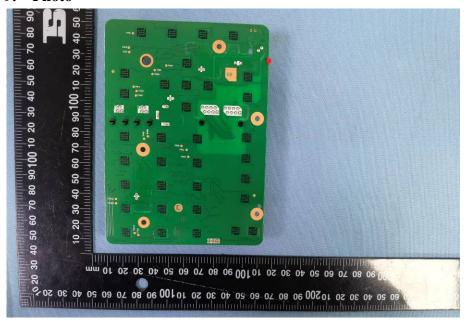
Photo 4.


CTC Laboratories, Inc.

6. Photo



CTC Laboratories, Inc.


Photo 8.

CTC Laboratories, Inc.

CTC Laboratories, Inc.