

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202308-0123-81

Page: 1 of 59

TEST REPORT

Certificate No. : TBC-C-202308-0123-2

Applicant : XonTel Technology Trd. Co. W.L.L

Equipment Under Test (EUT)

EUT Name : Audio Amplifier

Model No. : XT-160AMP

Series Model No. : ----

Brand Name : XonTel

Receipt Date : 2023-08-18

Test Date : 2023-08-18 to 2023-09-15

Issue Date : 2023-09-15

Standards : ETSI EN 301 489-1 V2.2.3: 2019

ETSI EN 301 489-17 V3.2.4: 2020

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above. The EUT technically complies with the Council Directive 2014/53/EU relating to radio equipment.

Test/Witness Engineer :

Engineer Supervisor : TANK SV

Engineer Manager : *****

CE

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-075-1.0

TABLE OF CONTENTS

1 🕥	GENERAL INFORMATION	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Operating Mode	7
	1.6 Performance Criteria	8
	1.7 Measurement Uncertainty	11
	1.8 Test Facility	
2	TEST RESULTS SUMMARY	12
3	TEST SOFTWARE	13
4	TEST EQUIPMENT	14
5	CONDUCTED DISTURBANCE TEST(AC PORT)	16
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 Test Data	
6	CONDUCTED EMISSIONS(WIRED NETWORK PORT)	
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	
	6.5 Test Data	
7	RADIATED EMISSION TEST	
•	7.1 Test Standard and Limit	
	7.1 Test Standard and Limit	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 Test Data	
8	HARMONIC CURRENT EMISSION TEST	
0	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 Test Data	
9	VOLTAGE FLUCTUATION AND FLICKER TEST	
T. Barrie	9.1 Test Standard and Limit	
	9.2 Test Standard and Limit	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 Test Data	
10	ELECTROSTATIC DISCHARGE IMMUNITY TEST	
10		
	10.1 Test Standard and Limit	
	10.2 Test Procedure	
	10.3 Deviation From Test Standard	28

Report No.: TBR-C-202308-0123-81 Page: 3 of 59

	10.4 Test Data	28
11	RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST	29
	11.1 Test Standard and Limit	29
	11.2 Test Setup	29
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	30
	11.5 Test Data	
12	ELECTRICAL FAST TRANSIENT/BURST TEST	31
	12.1 Test Standard and Limit	31
	12.2 Test Setup	
	12.3 Test Procedure	
	12.4 Deviation From Test Standard	
	12.5 Test Data	
13	SURGE IMMUNITY TEST	
	13.1 Test Standard and Limit	
	13.2 Test Setup	33
	13.3 Test Procedure	33
	13.4 Deviation From Test Standard	
	13.5 Test Data	
14	RF COMMON MODE	
	14.1 Test Standard and Limit	34
	14.2 Test Setup	34
	14.2 Test Procedure	
	14.3 Deviation From Test Standard	
	14.4 Test Data	
15	VOLTAGE DIPS AND INTERRUPTIONS IMMUNITY TEST	
	15.1 Test Standard and Limit	
	15.2 Test Setup	
	15.2 Test Procedure	
	15.3 Deviation From Test Standard	
	15.4 Test Data	
16	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	
17	PHOTOGRAPHS -TEST SETUP	42
ATT	ACHMENT ACONDUCTED EMISSION DATA (AC MAINS)	46
	ACHMENT BRADIATED EMISSION TEST DATA	
	ACHMENT CVOLTAGE FLUCTUATION AND FLICKER TEST DATA	
	ACHMENT DELECTROSTATIC DISCHARGE TEST DATA	
ATT	ACHMENT ERF FIELD STRENGTH SUSCEPTIBILITY TEST DATA	55
ATT	ACHMENT FELECTRICAL FAST TRANSIENT/BURST TEST DATA	56
	ACHMENT GSURGE IMMUNITY TEST DATA	
	ACHMENT HCONDUCTED IMMUNITY TEST DATA	
ATT	ACHMENT IVOLTAGE DIPS AND INTERRUPTIONS TEST DATA	59

Report No.: TBR-C-202308-0123-81 Page: 4 of 59

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202308-0123-81	Rev.01	Initial issue of report	2023-09-15
WORR WITH	111		
1000	J. Ginn		a work
UBI TOUR			2
1000	O. O. C.		4000
4077	Morra		4087
TO THE REAL PROPERTY.	1 1 1 1		
Was a	0.00		000
TODA	a Am	TO BY	William Contract
Din Con			
	W. C.		TO THE

Page: 5 of 59

1 General Information

1.1 Client Information

Applicant : XonTel Technology Trd. Co. W.L.L		XonTel Technology Trd. Co. W.L.L
Address : Office 21, Justice Tower, Ali Al Salem St. Qibla, Kuwait City, Stat Kuwait. Zip code: 13065		Office 21, Justice Tower, Ali Al Salem St. Qibla, Kuwait City, State of Kuwait. Zip code: 13065
Manufacturer :		XonTel Technology Trd. Co. W.L.L
Address		Office 21, Justice Tower, Ali Al Salem St. Qibla, Kuwait City, State of Kuwait. Zip code: 13065

1.2 General Description of EUT (Equipment Under Test)

EUT Name	8	Audio Amplifier			
Model(s)		XT-160AMP	KT-160AMP		
Model Difference	1	-11.			
Product Description		Operation Frequency: Bluetooth 5.0: 2402MHz~2480MHz			
Power Rating		Input: AC 115V-230V			
Software Version	:	V33			
Hardware Version		V1.0			

Remark: The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: TBR-C-202308-0123-81 Page: 6 of 59

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

Equipment Information							
Name	Name Model S/N Manufacturer						
				(1 TT			
	Cable Information						
Number	Number Shielded Type Ferrite Core Length						
W. Crim's	11110			MATO			

Page: 7 of 59

1.5 Description of Operating Mode

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Power supply + Working Mode
Mode 2	Bluetooth Link Mode

The EUT system operated these modes were found to be the worst case during the pre-scanning test as Following:

Final Test Mode Description					
					Mode 1
Mode 2 Bluetooth Link Mode					
For EMS Test					
Final Test Mode Description					
Mode 1 Power supply + Working Mode					
Mode 2 Bluetooth Link Mode					

Page: 8 of 59

1.6 Performance Criteria

ETSI EN 301 489-1

(1) Introduction

The performance criteria are used to take a decision on whether a radio equipment passes or fails immunity tests. For the purpose of the present document two categories of performance criteria apply:

- Performance criteria for continuous phenomena.
- Performance criteria for transient phenomena.

NOTE: Normally, the performance criteria depends upon the type of radio equipment and/or its intended application. Thus, the present document only contains general performance criteria commonly used for the assessment of radio equipment.

(2) Performance criteria for continuous phenomena

During the test, the equipment shall:

- · continue to operate as intended;
- not unintentionally transmit;
- not unintentionally change its operating state;
- not unintentionally change critical stored data.

(3) Performance criteria for transient phenomena

For all ports and transient phenomena with the exception described below, the following applies:

- The application of the transient phenomena shall not result in a change of the mode of operation (e.g. unintended transmission) or the loss of critical stored data.
- After application of the transient phenomena, the equipment shall operate as intended.

For surges applied to symmetrically operated wired network ports intended to be connected directly to outdoor lines the following criteria applies:

- For products with only one symmetrical port intended for connection to outdoor lines, loss of function is allowed, provided the function is self-recoverable, or can be otherwise restored. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.
- For products with more than one symmetrical port intended for connection to outdoor lines, loss of function on the port under test is allowed, provided the function is self-recoverable. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Page: 9 of 59

ETSI EN 301 489-17

(1) General performance criteria

The performance criteria are:

- performance criteria A for immunity tests with phenomena of a continuous nature;
- performance criteria B for immunity tests with phenomena of a transient nature;
- performance criteria C for immunity tests with power interruptions exceeding a certain time.

The equipment shall meet the minimum performance criteria as specified in the following clauses.

(2) Performance table

A, Performance criteria overview

Table 1: Performance criteria					
Criterion	During Test	After test (i.e. as a result of the application of the test)			
Α	Shall operate as intended. (see note). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance. Shall be no loss of function. Shall be no loss of critical stored data.			
В	May be loss of function.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no loss of critical stored data.			
C	May be loss of function.	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no loss of critical stored data.			

NOTE: Operate as intended during the test allows a level of degradation in accordance with clause 6.2.2.

B, Performance criteria overview

For equipment that supports a PER or FER, the minimum performance level shall be a PER or FER less than or equal to 10 %.

For equipment that does not support a PER or a FER, the minimum performance level shall be no loss of the wireless transmission function needed for the intended use of the equipment.

(3) Performance criteria for Continuous phenomena applied to Transmitters (CT)

The performance criteria A shall apply.

Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an ACKnowledgement (ACK) or Not ACKnowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission

resulting from the application of the test is correctly interpreted.

Page: 10 of 59

(4) Performance criteria for Transient phenomena applied to Transmitters (TT)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply.

Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission

resulting from the application of the test is correctly interpreted.

(5) Performance criteria for Continuous phenomena applied to Receivers (CR)

The performance criteria A shall apply.

Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

(6) Performance criteria for Transient phenomena applied to Receivers (TR)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply.

Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Page: 11 of 59

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of

confidence of approximately 95 %.

Test Item	Expanded Uncertainty (U _{Lab})
Conducted Emission	±3.50 dB
Radiated Emission (9kHz to 30 MHz)	±4.60 dB
Radiated Emission (30MHz to 1000 MHz)	±4.60 dB
Radiated Emission (Above 1000MHz)	±4.50 dB
Temperature	±0.6℃
Humidity	±4%

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

12 of 59 Page:

2 Test Results Summary

Test procedures according to the technical standards:

ETSI EN 301 489-1 V2.2.3: 2019 Requirement Standard: ETSI EN 301 489-17 V3.2.4: 2020 **EMC Emission Test Standard** Limit Result Remark **Test Item** Conducted Emission Class B **PASS** EN 55032:2015/A1:2020 Class B **PASS** Radiated Emission Harmonic Current **ENIEC** Class A N/A Note(2) 61000-3-2:2019/A1:2021 **Emission** Voltage Fluctuations& EN 61000-3-3:2013/A2:2021 **PASS** Flicker **EMC Immunity** Performance Result Remark **Test Standard Test Item** Criteria Electrostatic В EN 61000-4-2: 2009 **PASS** (TT,TR) Discharge RF electromagnetic Α EN IEC 61000-4-3:2020 **PASS** field (CT,CR) EN 61000-4-4: 2012 Fast transients **PASS** (TT,TR) В EN 61000-4-5:2014/A1:2017 Surges **PASS** (TT,TR) Α EN 61000-4-6: 2014 Injected Current PASS (CT,CR) Volt. Interruptions B/B/C/C EN IEC 61000-4-11:2020 **PASS** Volt. Dips NOTE (3) NOTE: (1) " N/A" denotes test is not applicable in this Test Report (2) The power consumption of EUT is less than 75W and no Limits apply. (3) Voltage dip: 0% residual 0.5 cycle– Performance Criteria B (TT,TR) Voltage dip: 0% residual 1 cycle- Performance Criteria B (TT,TR) Voltage dip: 70% residual 25 cycles - Performance Criteria C Voltage Interruption: 0% residual votage 250 cycles – Performance Criteria C • in the case where the equipment is fitted with or connected to a battery back-up, the performance criteria for transient phenomena shall apply; in the case where the equipment is powered solely from the AC mains supply (without the use of a parallel battery back-up) volatile user data may have been lost and if applicable the communication link need not to be maintained and lost functions should be recoverable by user or operator (4) The performance criteria for continuous phenomena shall apply(CT,CR). The performance criteria for transient phenomena shall apply (TT,TR). (5) Monitoring of EUT for all immunity test: Audio: The measure acoustic interference ratio and/or the measured electrical interference ratio during the test shall be -20dB or better. Visual: Monitor the operating status via watching the monitor. Radio: The measure PER during the test shall be less than 10%

Report No.: TBR-C-202308-0123-81 Page: 13 of 59

3 Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Magnetic Emission	EZ-EMC	EZ	CDI-03A2
Disturbance Power	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	TS+(J32-RE)	Tonsced	3.0.0.4
Radiation Immunity	TS+(J32-RS)	Tonsced	3.0.0.5
Harmonic Current	CTS4	CI	4.24.0
Voltage Fluctuation and Flicker	CTS4	CI	4.24.0
Conducted Immunity	IEC/EN 61000-6-4 Application	FRANKONIA	1.1.1
Electrical Fast Transient	lec.control	Nemtest	5.1.1.0
Surge	lec.control	Nemtest	5.1.1.0
Voltage Dip and Interruption	lec.control	Nemtest	5.1.1.0

Report No.: TBR-C-202308-0123-81 Page: 14 of 59

4 Test Equipment

Conducted Emis	1	T	1	1	T
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
Radiation Emiss	ion Test (A Site	e)		·	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jun. 20, 2023	Jun. 19, 2024
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb.26, 2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
Pre-amplifier	SONOMA	310N	185903	Feb. 23, 2023	Feb.22, 2024
Pre-amplifier	HP	8449B	3008A00849	Feb. 23, 2023	Feb.22, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 30, 2023	Aug. 29, 2024
Radiation Emiss	ion Test (B Site	e)			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb.22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 30, 2023	Aug. 29, 2024
Harmonic Curre	nt and Voltage	Fluctuation ar	nd Flicker Test		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Harmonic Flicker Test System	CI	5001ix-CTS-400	100321	Jun. 20, 2023	Jun. 19, 2024
AC Power Source	CI	500liX	59468	Jun. 20, 2023	Jun. 19, 2024
Discharge Immu	nity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
ESD Tester	TESEQ	NSG437	304	Jun. 21, 2023	Jun. 20, 2024
Radiated Immun	ity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date

Report No.: TBR-C-202308-0123-81 Page: 15 of 59

Gestockte LogPerBreitband- antenna Stacked LogPerBroadban d	SCHWARZBEC K	STLP 9129	162	N/A	N/A
Electric field probe	Narda	EP 601	811ZX01000	Feb. 24, 2023	Feb.23, 2024
Signal Generator	Agilent	N5181A	MY50141953	Aug. 30, 2023	Aug. 29, 2024
EPM Series Power Meter	KEYSIGHT	N1914A	MY61180020	Jun. 20, 2023	Jun. 19, 2024
Power Sensor	KEYSIGHT	E9301A	MY61130007	Jun. 20, 2023	Jun. 19, 2024
Power Sensor	KEYSIGHT	E9301A	MY61130011	Jun. 20, 2023	Jun. 19, 2024
Radio Frequency Switch	Tonscend	JS0806s	21E8060428	N/A	N/A
Microwave Power amplifier	Micotop	MPA-80-1000- 250	MPA2105144	Jun. 20, 2023	Jun. 19, 2024
Microwave Power amplifier	Micotop	MPA-1000-600 0-100	MPA2105150	Jun. 20, 2023	Jun. 19, 2024
Electrical Fast T	ransient/ Surge	e/ Voltage Dip	and Interruption	on Test	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Simulator	EMTEST	UCS500N5	V0948105575	Jun. 20, 2023	Jun. 19, 2024
Auto-transformer	EMTEST	V4780S2	0109-41	Jun. 20, 2023	Jun. 19, 2024
Coupling Clamp	EMTEST	HFK	1109-04	Jun. 20, 2023	Jun. 19, 2024
Conducted Imm	unity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
RF Generator	FRANKONIA	CIT-10/75	126B1126	Jun. 20, 2023	Jun. 19, 2024
Attenuator	FRANKONIA	59-6-33	A413	Jun. 20, 2023	Jun. 19, 2024
M-CDN	LUTHI	L-801 M2/M3	2599	Jun. 20, 2023	Jun. 19, 2024
AF2-CDN	LUTHI	L-801:AF2	2538	Feb. 23, 2023	Feb.22, 2024
EM Injection Clamp	LUTHI	EM101	35958	Jun. 20, 2023	Jun. 19, 2024

Page: 16 of 59

5 Conducted Disturbance Test(AC Port)

5.1 Test Standard and Limit

5.1.1 Test Standard

ETSI EN 301 489-1 Clause 8.4

ETSI EN 301 489-17

EN 55032:2015/A1:2020

5.1.2 Test Limit

Table A.9 – Requirements for conducted emissions from the AC mains power ports of Class A equipment

I. AC mai	ns power ports (3.1.1)			
Table clause	Frequency range MHz	Coupling device (see Table A.8)	Detector type / bandwidth	Class A limits dB(μV)
A9.1	0,15 to 0,5	ABABI	Overi Beak / O kHz	79
	0,5 to 30	AMN	Quasi Peak / 9 kHz	73
A9.2	0,15 to 0,5	AMNI	Average / O kl la	66
	0,5 to 30	AMN	Average / 9 kHz	60

Table A.10 – Requirements for conducted emissions from the AC mains power ports of Class B equipment

. AC maii	ns power ports (3.1.1)			
Table clause	Frequency range MHz	Coupling device (see Table A.8)	Detector type / bandwidth	Class B limits dB(μV)
A10.1	0,15 to 0,5			66 to 56
	0,5 to 5	AMN	Quasi Peak / 9 kHz	56
	5 to 30			60
A10.2	0,15 to 0,5			56 to 46
	0,5 to 5	AMN	Average / 9 kHz	46
	5 to 30			50

5.2 Test Setup

Page: 17 of 59

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from the nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard No deviation

5.5 Test Data

Please refer to the Attachment A.

Page: 18 of 59

6 Conducted Emissions(Wired Network Port)

6.1 Test Standard and Limit

6.1.1 Test Standard

ETSI EN 301 489-1 Clause 8.7 ETSI EN 301 489-17 EN 55032:2015/A1:2020

6.1.2 Test Limit

Table A.11 – Requirements for asymmetric mode conducted emissions from Class A equipment

Applicable to

- 1. wired network ports (3.1.32)
- 2. optical fibre ports (3.1.25) with metallic shield or tension members
- 3. antenna ports (3.1.3)

Table clause	Frequency range MHz	Coupling device (see Table A.8)	Detector type / bandwidth	Class A voltage limits dB(μV)	Class A current limits dB(μA)
A11.1	0,15 to 0,5	A A N I	Overei Beek / O kl.	97 to 87	
	0,5 to 30	AAN	Quasi Peak / 9 kHz	87	- /-
	0,15 to 0,5	A A N I	Assertant / O lella	84 to 74	- n/a
	0,5 to 30	O,5 to 30 AAN Average / 9 kHz	Average / 9 kHz	74	
A11.2	0,15 to 0,5	CVP	Oversi Barala / O lalla	97 to 87	53 to 43
	0,5 to 30	and current probe	Quasi Peak / 9 kHz	87	43
	0,15 to 0,5	CVP	Average / O kills	84 to 74	40 to 30
	0,5 to 30	and current probe	Average / 9 kHz	74	30
A11.3	0,15 to 0,5	Oursent Ducks	Oversi Basile / O lel Is		53 to 43
	0,5 to 30	Current Probe	Quasi Peak / 9 kHz	- 1-	43
	0,15 to 0,5	Owner of Durch	A	- n/a	40 to 30
	0,5 to 30	Current Probe	Average / 9 kHz		30
	-				

The choice of coupling device and measurement procedure is defined in Annex C.

AC mains ports that also have the function of a wired network port shall meet the limits given in Table A.9.

The measurement shall cover the entire frequency range.

The application of the voltage and/or current limits is dependent on the measurement procedure used. Refer to Table C.1 for applicability.

Testing is required at only one EUT supply voltage and frequency.

Applicable to ports listed above and intended to connect to cables longer than 3 m.

19 of 59 Page:

Table A.12 – Requirements for asymmetric mode conducted emissions from Class B equipment

Applicable to

- 1. wired network ports (3.1.32)
- optical fibre ports (3.1.25) with metallic shield or tension members
 broadcast receiver tuner ports (3.1.8)
- 4. antenna ports (3.1.3)

Table clause	Frequency range MHz	Coupling device (see Table A.8)	Detector type / bandwidth	Class B voltage limits dB(μV)	Class B current limits dB(μA)
A12.1	0,15 to 0,5	A A N I	Oversi De els / O lelle	84 to 74	
	0,5 to 30	AAN	Quasi Peak / 9 kHz	74	
	0,15 to 0,5	A A N I	A	74 to 64	n/a
	0,5 to 30	AAN	Average / 9 kHz	64	
A12.2	0,15 to 0,5	CVP	Oversi Dardy / O MIT	84 to 74	40 to 30
	0,5 to 30	and current probe	Quasi Peak / 9 kHz	74	30
	0,15 to 0,5	CVP	Average / 0 kH=	74 to 64	30 to 20
	0,5 to 30	and current probe	Average / 9 kHz	64	20
A12.3	0,15 to 0,5	Command Duals	Overi Deek / O kHz		40 to 30
	0,5 to 30	Current Probe	Quasi Peak / 9 kHz	/ -	30
	0,15 to 0,5	Command Duals	A	n/a	30 to 20
	0,5 to 30	Current Probe	Average / 9 kHz		20

The choice of coupling device and measurement procedure is defined in Annex C.

Screened ports including TV broadcast receiver tuner ports are measured with a common-mode impedance of 150 Ω . This is typically accomplished with the screen terminated by 150 Ω to earth.

AC mains ports that also have the function of a wired network port shall meet the limits given in Table A.10.

The measurement shall cover the entire frequency range.

The application of the voltage and/or current limits is dependent on the measurement procedure used. Refer to Table C.1 for applicability.

Measurement is required at only one EUT supply voltage and frequency.

Applicable to ports listed above and intended to connect to cables longer than 3 m.

6.2 Test Setup

Page: 20 of 59

6.3 Test Procedure

Detailed test procedure was following clause C.4.1 of EN 55032.

Frequency range 150kHz-30MHz was checked and EMI receiver measurement bandwidth was set to 9 kHz.

Data Port	Measurement type	Coupling device	No. of Pairs
Balanced Unscreened	Voltage	AAN	≤ 4
Balanced Unscreened	Voltage and Current	CVP & Current probe	>4 or unable to AAN
Screened or Coaxial	Voltage	AAN	N/A
Screened or Coaxial	Voltage or Current	Current probe / "150Ω to 50Ω adaptor" / high impedance probe	N/A
Unbalanced cables	Voltage and Current	CVP & Current probe	N/A

6.4 Deviation From Test Standard
No deviation

6.5 Test Data

Not applicable.

Page: 21 of 59

7 Radiated Emission Test

7.1 Test Standard and Limit

7.1.1 Test Standard

ETSI EN 301 489-1 Clause 8.2 ETSI EN 301 489-17 EN 55032:2015/A1:2020

7.1.2 Test Limit

Radiated Disturbance Test Limit

FREQUENCY (MHz)	Class A (at 3m) dBuV/m	Class B (at 3m) dBuV/m
30 – 230	50	40
230 – 1000	57	47

Notes:

- (1) The limit for radiated test was performed according to as following: EN 55032
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Limits of Radiated Emission Measurement (Above 1000MHz)

FREQUENCY	Class A (dBuV/m) (at 3m)		Class B (dBuV/m) (at 3m)	
(MHz)	PEAK	AVERAGE	PEAK	AVERAGE
1000-3000	76	56	70	50
3000-6000	80	60	74	54

Notes:

(1) The lower limit applies at the transition frequency.

Frequency Range of Radiated Measurement

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5th harmonic of the highest frequency or 6 GHz, whichever is lower

Page: 22 of 59

7.2 Test Setup

Below-1G

Above 1G

Figure C.1 - Measurement distance

Page: 23 of 59

7.3 Test Procedure

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT and local AE shall be arranged in the most compact practical arrangement within the test volume, while respecting typical spacing and the requirements defined in Annex D. The central point of the arrangement shall be positioned at the centre of the turntable. The measurement distance is the shortest horizontal distance between an imaginary circular periphery just encompassing this arrangement and the calibration point of the antenna. See Figure C.1 and Figure C.2.

The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

The initial step in collecting radiated emission data is a spectrum Quasi Peak detector mode scanning the measurement frequency range.

If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

7.4 Deviation From Test Standard No deviation

7.5 Test Data

Please refer to the Attachment B.

Page: 24 of 59

8 Harmonic Current Emission Test

8.1 Test Standard and Limit

8.1.1 Test Standard

ETSI EN 301 489-1 Clause 8.5

ETSI EN 301 489-17

EN IEC 61000-3-2: 2019/A1: 2021

8.1.2 Test Limit

Limits for Class A equipment			Limits fo	r Class D eq	uipment	
Odd Harmonic Order (n)	maximum permissible harmonic Current (A)	Even H Harmonic Order (n)	Maximum permissible harmonic Current (A)	Harmonic Order (n)	Maximum Permissible Harmonic Current per watt (mA/W)	Maximum Permissible Harmonic Current (A)
3	2.30	2	1.08	3	3.4	2.30
5	1.14	4	0.43	5	1.9	1.14
7	0.77	6	0.30	7	1.0	0.77
9	0.40	8≤n≤40	0.23X8/n	9	0.5	0.40
11	0.33	- 1 E		11	0.35	0.33
13 15≤n≤39	0.21 0.15X15/n		B m	15≤n≤39 (odd harmonics only)	3.85/n	0.15X15/n

8.2 Test Setup

8.3 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.

The classification of EUT is according to section 5 of EN 61000-3-2. The EUT is classified as follows:

Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class D: Equipment having a specified power less than or equal to600 W of the following types: Personal computers and personal computer monitors and television receivers.

8.4 Deviation From Test Standard No deviation

Page: 25 of 59

8.5 Test Data N/A

Page: 26 of 59

9 Voltage Fluctuation and Flicker Test

9.1 Test Standard and Limit

9.1.1 Test Standard

ETSI EN 301 489-1 Clause 8.6

ETSI EN 301 489-17

EN 61000-3-3: 2013/A2: 2021

9.1.2 Test Limit

Flicker Test Limit

Test Items	Limits
Pst	1.0
dc	3.3%
dmax	4.0%
dt	Not exceed 3.3% for 500ms

9.2 Test Setup

9.3 Test Procedure

Fluctuation and Flickers Test:

Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.

All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

For the actual test configuration, please refer to the related Item-Block Diagram of system tested.

9.4 Deviation From Test Standard No deviation

9.5 Test Data

Please refer to the Attachment C.

Page: 27 of 59

10 Electrostatic Discharge Immunity Test

10.1 Test Standard and Limit

10.1.1 Test Standard

ETSI EN 301 489-1 Clause 9.3

ETSI EN 301 489-17 EN 61000-4-2: 2009

10.1.2 Test Level

Discharge Impedance:	330 ohm/ 150pF	
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV(Direct) Contact Discharge: 2kV/4kV (Direct /Indirect)	
Polarity:	Positive& Negative	
Discharge Mode:	Single Discharge	
Discharge Period:	1 second minimum	

10.2 Test Setup

10.2 Test Procedure

The test method shall be in accordance with CENELEC EN 61000-4-2 [2], clauses 6, 7 and 8.

For radio equipment and ancillary equipment the following requirements and evaluation of test results shall apply.

The test severity level for contact discharge shall be ±4 kV and for air discharge ±8 kV. All other details, including intermediate test levels, are contained within CENELEC EN 61000-4-2 [2], clause 5.

Electrostatic discharges shall be applied to all exposed surfaces of the EUT except where the user documentation specifically indicates a requirement for appropriate

Page: 28 of 59

protective measures (as specified in CENELEC EN 61000-4-2 [2], clauses 8.3.2 and 8.3.3).

10.3 Deviation From Test Standard No deviation

10.4 Test Data

Please refer to the Attachment D.

Page: 29 of 59

11Radiated Electromagnetic Field Immunity test

11.1 Test Standard and Limit

11.1.1 Test Standard

ETSI EN 301 489-1 Clause 9.2

ETSI EN 301 489-17

EN IEC 61000-4-3: 2020

11.1.2 Test Level

Test Level for Radiated Electromagnetic Field Immunity Test

Port	Test Specification
Enclosure Port	80-6000MHz
	3 V/m 80 % AM (1kHz)

11.2 Test Setup

Page: 30 of 59

11.3 Test Procedure

The test method shall be in accordance with CENELEC EN 61000-4-3 [3], clauses 6, 7 and 8.

The following requirements and evaluation of test results shall apply:

• the test level shall be 3 V/m (measured unmodulated). The test signal shall be amplitude modulated to a depth of 80 % by a sinusoidal audio signal of 1 000 Hz.

If the wanted signal is modulated at 1 000 Hz, then an audio signal of 400 Hz shall be used:

- the test shall be performed over the frequency range 80 MHz to 6 000 MHz with the exception of the exclusion band for transmitters, receivers and duplex transceivers (see clause 4.3), as appropriate;
- for receivers and transmitters the stepped frequency increments shall be 1 % frequency increment of the momentary used frequency;
- the dwell time of the test phenomena at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond;

NOTE: Dwell time is product dependent.

the frequencies selected and used during the test shall be recorded.

All the scanning conditions are as following:

Condition of Test	Remark
Fielded Strength	3V/m
Radiated Signal	80%AM,1kHz Since Wave
Scanning Frequency	80-6000MHz

Note:

The exclusion band for immunity testing of equipment operating in the 2,4 GHz band shall be:

- lower limit of exclusion band = lowest allocated band edge frequency -120 MHz, i.e. 2 280 MHz;
- upper limit of exclusion band = highest allocated band edge frequency +120 MHz, i.e. 2 603,5MHz.

The exclusion band for immunity testing of equipment operating in the 5 GHz Wi-Fi band shall be:

- lower limit of exclusion band = lowest allocated band edge frequency -270 MHz, i.e. 4 880 MHz;
- upper limit of exclusion band = highest allocated band edge frequency +270 MHz, i.e. 5 995 MHz.

11.4 Deviation From Test Standard

No deviation

11.5 Test Data

Please refer to the Attachment E.

Page: 31 of 59

12 Electrical Fast Transient/Burst Test

12.1 Test Standard and Limit

12.1.1 Test Standard

ETSI EN 301 489-1 Clause 9.4

ETSI EN 301 489-17 EN 61000-4-4: 2012

12.1.2 Test Level

Test Level for Electrical Fast Transient Test

0081	On Switching Adapter Lines	On I/O (Input/Output) Signal data and control lines
Test Voltage:	1 KV	0.5 KV
Polarity:	Positive& Negative	
Impulse Wave Shape:	5/50ns	
Burst Duration:		15ms
Burst Period:	300ms	
Test Duration:	Not less than 1 min	

12.2 Test Setup

12.3 Test Procedure

The test method shall be in accordance with CENELEC EN 61000-4-4 [4], clauses 7 and 8.

The following requirements and evaluation of test results shall apply:

- the test level for signal ports, wired network ports (excluding xDSL), and control ports shall be 0,5 kV open circuit voltage at a repetition rate of 5 kHz as given in CENELEC EN 61000-4-4 [4], clause 5;
- the test level for xDSL wired network ports shall be 0,5 kV open circuit voltage at a repetition rate of 100 kHz as given in CENELEC EN 61000-4-4 [4], clause 5;
- the test level for DC power input ports shall be 0,5 kV open circuit voltage at a repetition rate of 5 kHz as given CENELEC EN 61000-4-4 [4], clause 5;
- the test level for AC mains power input ports shall be 1 kV open circuit voltage at a repetition rate of 5 kHz as given CENELEC EN 61000-4-4 [4], clause 5.

Page: 32 of 59

12.4 Deviation From Test Standard
No deviation

12.5 Test Data
Please refer to the Attachment F.

Page: 33 of 59

13 Surge Immunity Test

13.1 Test Standard and Limit

13.1.1 Test Standard

ETSI EN 301 489-1 Clause 9.8

ETSI EN 301 489-17

EN 61000-4-5: 2014/A1: 2017

13.1.2 Test Level

Test Level for Surge Immunity Test

Basic Standard:	EN 61000-4-5
	Analogue/digital data ports: 1KV (see a)
Test Requirement:	DC network power ports: 0.5KV
	AC mains power ports: 1KV(Line-Line), 2KV(Line-earth)
T _r /T _h	1.2/50us, 10/700us
Polarity:	Positive/Negative
Phase Angle:	0/90/180/270
Pulse Repetition Rate:	1 time/min.(maximum)
Number of Tests:	5 positive and 5 negative at selected points
a: Port type: coaxial or shie	lded. Apply: shield to ground.

13.2 Test Setup

13.3 Test Procedure

- 1) Set the parameters of the CW generator and interference generator as shown in tables 4.2.9.2-1 and 4.2.9.2-2.
- 2) Set the power level of the UE according to tables 4.2.9.2-1 and 4.2.9.2-2 with a ±1 dB tolerance.
- 3) Measure the BER of DCH received from the UE at the SS.

Details of initial conditions for UEs supporting UTRA FDD can be found in ETSI TS 134 121-1 [1], clause 6.7.

13.4 Deviation From Test Standard No deviation

13.5 Test Data

Please refer to the Attachment G.

Page: 34 of 59

14 RF Common Mode

14.1 Test Standard and Limit

14.1.1 Test Standard

ETSI EN 301 489-1 Clause 9.5

ETSI EN 301 489-17 EN 61000-4-6: 2014

14.1.2 Test Level

Test Level for RF Common Mode

Port	Test Specification
Input AC power port	0.15MHz~80MHz
THE CHILD	3V(r.m.s.) (unmodulated)

14.2 Test Setup

14.2 Test Procedure

The following requirements and evaluation of test results shall apply:

- the test level shall be severity level 2 as given in CENELEC EN 61000-4-6 [6], clause 5 corresponding to 3 V rms unmodulated. The test signal shall then be amplitude modulated to a depth of 80 % by a sinusoidal audio signal of 1 000 Hz. If the wanted signal is modulated at 1 000 Hz, then the test signal of 400 Hz shall be used;
- the test shall be performed over the frequency range 150 kHz to 80 MHz with the exception of an exclusion band for transmitters, and for receivers and duplex transceivers, (see clause 4.3);
- for receivers and transmitters the stepped frequency increments shall be 1 % frequency increment of the momentary frequency in the frequency range 150 kHz to 80 MHz;
- the injection method to be used shall be selected according to the basic standard CENELEC EN 61000-4-6 [6], clause 7;
- responses on receivers or receiver parts of transceivers occurring at discrete frequencies which are narrow band responses (spurious responses), are disregarded from the test (as specified in clause 4); the dwell time of the test phenomena at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond;
- the frequencies of the immunity test signal selected and used during the test shall be recorded.

Page: 35 of 59

14.3 Deviation From Test Standard
No deviation

14.4 Test Data
Please refer to the Attachment H.

Page: 36 of 59

15 Voltage Dips and Interruptions Immunity Test

15.1 Test Standard and Limit

15.1.1 Test Standard

ETSI EN 301 489-1 Clause 9.7

ETSI EN 301 489-17

EN IEC 61000-4-11: 2020

15.1.2 Test Level

Test Level for Voltage Dips and Interruptions

Basic Standard:	EN 61000-4-11	
Required Performance:	B(For 100% Voltage Dips)	
	B(For 100% Voltage Dips)	
	C(For 30% Voltage Dips)	
	C(For 100% Voltage Interruptions)	
Test Duration Time:	Minimum three test events in sequence	
Interval Between Event:	Minimum ten seconds	
Phase Angle:	0°/45°/90°/135°/180°/225°/270°/315°/360°	
Test Cycle:	3 times	

15.2 Test Setup

15.2 Test Procedure

The following requirements and evaluation of test results shall apply. The test method shall be in accordance with CENELEC EN 61000-4-11 The test levels shall be:

- voltage dip: 0 % residual voltage for 0,5 cycle;
- · voltage dip: 0 % residual voltage for 1 cycle;
- voltage dip: 70 % residual voltage for 25 cycles (at 50 Hz);
- voltage interruption: 0 % residual voltage for 250 cycles (at 50 Hz).

15.3 Deviation From Test Standard

No deviation

15.4 Test Data

Please refer to the Attachment I.

Page: 37 of 59

16 Photographs - Constructional Details

Photo 1 Appearance of EUT

Photo 2 Appearance of EUT

Page: 38 of 59

Photo 3 Appearance of EUT

Photo 4 Appearance of EUT

Page: 39 of 59

Photo 5 Appearance of EUT

Photo 6 Internal of EUT

Page: 40 of 59

Photo 7 Internal of PCB

Photo 8 Appearance of PCB

Report No.: TBR-C-202308-0123-81 Page: 41 of 59

Photo 9 Appearance of PCB

Photo 10 Appearance of PCB

Page: 42 of 59

17Photographs -Test Setup

Conducted Emission Test Setup

Radiated Emission Test Setup-Below 1G

Page: 43 of 59

Radiated Emission Test Setup-Above 1G

Voltage fluctuations & flicker Test Setup

Page: 44 of 59

Electrostatic Discharge Test Setup

EFT, Surge, Voltage Dips Test Setup

Page: 45 of 59

Radio-frequency, Continuous Conducted Disturbance Test Setup

Radiated Immunity Test Setup

46 of 59 Page:

Attachment A--Conducted Emission Data (AC Mains)

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 47 of 59

Temperature:	23.6℃		Re	lative Humi	idity:	47%	
Pressure:	1010	hPa	a W	A STATE OF THE PARTY OF THE PAR	60		
Test Voltage:	AC 23	30V/50 Hz	13	CILI CILL			Alle
Terminal:	Neutra	al			6	MAL	
Test Mode:	Mode	2	AKOF.		1		
Remark:	Only	showed test	data of the	worst mode			HU
30 MWWWW		to photography photography	~~144444444444444444444444444444444444	Application of the second of t	and the second second	QP: AVG	pe.
-20							
0.150 No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	30.000
No. Mk.	Freq.	Level	Correct Factor	Measure- ment	dBuV	dB	Detector
No. Mk.	Freq. MHz 0.1539	dBuV 47.67	Correct Factor dB 11.19	Measure- ment dBuV 58.86	dBuV 65.78	dB -6.92	Detector QP
No. Mk.	Freq. MHz 0.1539 0.1539	dBuV 47.67 23.94	Correct Factor dB 11.19 11.19	Measure- ment dBuV 58.86 35.13	dBuV 65.78 55.78	dB -6.92 -20.65	Detector QP AVG
No. Mk.	Freq. MHz 0.1539	dBuV 47.67	Correct Factor dB 11.19	Measure- ment dBuV 58.86	dBuV 65.78	dB -6.92	Detector QP
No. Mk.	Freq. MHz 0.1539 0.1539	dBuV 47.67 23.94	Correct Factor dB 11.19 11.19	Measure- ment dBuV 58.86 35.13	dBuV 65.78 55.78	dB -6.92 -20.65	Detector QP AVG
No. Mk.	Freq. MHz 0.1539 0.1539 0.4020	dBuV 47.67 23.94 35.78	Correct Factor dB 11.19 11.07	Measure- ment dBuV 58.86 35.13 46.85	dBuV 65.78 55.78 57.81	dB -6.92 -20.65 -10.96	QP AVG QP
No. Mk. 1 2 3 4	Freq. MHz 0.1539 0.1539 0.4020 0.4020	Level dBuV 47.67 23.94 35.78 27.09	Correct Factor dB 11.19 11.19 11.07	Measure- ment dBuV 58.86 35.13 46.85 38.16	dBuV 65.78 55.78 57.81 47.81 56.00	dB -6.92 -20.65 -10.96 -9.65	Detector QP AVG QP AVG
No. Mk. 1 2 3 4 5 *	Freq. MHz 0.1539 0.1539 0.4020 0.4020 0.5819	Level dBuV 47.67 23.94 35.78 27.09 39.43	Correct Factor dB 11.19 11.07 11.07	Measure- ment dBuV 58.86 35.13 46.85 38.16 50.50	dBuV 65.78 55.78 57.81 47.81 56.00 46.00	dB -6.92 -20.65 -10.96 -9.65 -5.50	Detector QP AVG QP AVG QP
No. Mk. 1 2 3 4 5 *	Freq. MHz 0.1539 0.1539 0.4020 0.4020 0.5819	Level dBuV 47.67 23.94 35.78 27.09 39.43 22.06	Correct Factor dB 11.19 11.07 11.07 11.07	Measure- ment dBuV 58.86 35.13 46.85 38.16 50.50 33.13	dBuV 65.78 55.78 57.81 47.81 56.00 46.00	dB -6.92 -20.65 -10.96 -9.65 -5.50 -12.87	Detector QP AVG QP AVG QP AVG
No. Mk. 1 2 3 4 5 * 6 7	Freq. MHz 0.1539 0.1539 0.4020 0.4020 0.5819 0.5819 1.0300	Level dBuV 47.67 23.94 35.78 27.09 39.43 22.06 28.91	Correct Factor dB 11.19 11.07 11.07 11.07 11.07 11.07	Measure- ment dBuV 58.86 35.13 46.85 38.16 50.50 33.13 39.80	dBuV 65.78 55.78 57.81 47.81 56.00 46.00	dB -6.92 -20.65 -10.96 -9.65 -5.50 -12.87 -16.20 -21.16	Detector QP AVG QP AVG QP AVG
No. Mk. 1 2 3 4 5 * 6 7	Freq. MHz 0.1539 0.1539 0.4020 0.4020 0.5819 0.5819 1.0300 1.0300	Level dBuV 47.67 23.94 35.78 27.09 39.43 22.06 28.91 13.95	Correct Factor dB 11.19 11.07 11.07 11.07 11.07 10.89	Measure- ment dBuV 58.86 35.13 46.85 38.16 50.50 33.13 39.80 24.84	dBuV 65.78 55.78 57.81 47.81 56.00 46.00 56.00	dB -6.92 -20.65 -10.96 -9.65 -5.50 -12.87 -16.20 -21.16	Detector QP AVG QP AVG QP AVG QP AVG
No. Mk. 1 2 3 4 5 * 6 7 8 9	Freq. MHz 0.1539 0.1539 0.4020 0.4020 0.5819 1.0300 1.0300 3.7940	Level dBuV 47.67 23.94 35.78 27.09 39.43 22.06 28.91 13.95 28.96	Correct Factor dB 11.19 11.07 11.07 11.07 11.07 10.89 10.89	Measure- ment dBuV 58.86 35.13 46.85 38.16 50.50 33.13 39.80 24.84 39.35	dBuV 65.78 55.78 57.81 47.81 56.00 46.00 56.00	dB -6.92 -20.65 -10.96 -9.65 -5.50 -12.87 -16.20 -21.16 -16.65	Detector QP AVG QP AVG QP AVG QP AVG QP AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 48 of 59

Attachment B--Radiated Emission Test Data

----Below 1G

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 49 of 59

								THAT			- 4	7 47 7							
Ten	nperati	ıre:		24.	6°C		- 10		R	elative	e Hui	midity	/ :	52%	ó				B
Pre	ssure:			101	10 h	nPa			113	1 line		200		W.		0	1		
Tes	t Volta	ge:		AC	23	0V/5	50 Hz	Z			CH	115			PA.	1		AL SE	
Ant	. Pol.			Ver	rtica	al				8.8			CI	11					
Tes	t Mode) :		Мо	de	2		A 1	ALE				1				1		
	nark:			On	ly s	how	ed te	est data	of the	e wors	t mo	de		1				8	
30.0	dBuV/m	**************************************	M	3	<u></u>	*yww/	4	M.M.	5 W	www.	5 E	EN55	5032 Cla	September 1	M Radio	in -6 i	dB www.		
-20																			
30	.000 4	0	50	60		80			(Hz)		30		100	500	600	700	100	0.000	_
1	No. MI	ζ.	Fre	q.			ıdinç vel	•	rect	Mea me	sure ent		mit		Ove	r			
			МН	z		dB	BuV	dB/	m	dBu	uV/m	dE	3uV/n	n	dB		Dete	ector	_
1	*	3	0.00	000		43	.93	-8.2	20	35	.73	4	0.00)	-4.2	7	ре	eak	-
2	!	4	3.50)56		51	.13	-16.	.57	34	.56	4	0.00)	-5.4	4	ре	eak	-
3		6	4.43	330		49	.98	-16.	49	33	3.49	4	0.00)	-6.5	1	ре	eak	-
4	!	10	9.7	960)	49	.43	-15.	15	34	.28	4	0.00)	-5.7	2	ре	eak	-
5		18	31.9	199)	44	.61	-13.	31	31	.30	4	0.00)	-8.7	0	рє	eak	_
6		25	2.9	482	2	42	.62	-10.	64	31	.98	4	7.00) .	-15.0)2	рє	eak	-
																			-

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 50 of 59

----Above 1G

Tempe	rature:	26℃		R	elative Hun	nidity: 54	4%	
Pressu	re:	1010) hPa	71 C	CITY OF THE PARTY	1300		MAD.
Test Vo	oltage:	AC :	230V/50 Hz		a U		1919	
Ant. Po	ol.	Hori	zontal	THE STATE OF	13.3	a AM		
Γest M	ode:	Mod	le 1			13		M
Remarl	k:	No r	eport for the	e emission v	vhich below	the prescrib	oed limit.	
90.0 dB	uV/m							
во								
					E	l 55032 ClassB Ra	diation PEAK	
70								
50					E	l 55032 ClassB Ra	diation AVG	
50								
40				and the same of th	1	and the second second	announderfy by by by by	peal
30	mander of the phops the revenue	Maranew March W. W.	the state of the state of the state of the	ana my	wagen was	and and which was a fill the	المراسع بالمواعلين ليستريدويهم	AVG
m	profeshiology Tarkingh	- Harlada Harriston	Althorough to Marcon programme to					
20								
10								
o								
-10								
1000.00	0 1500.00	2000.00	2500.00 30	00.00 (MHz)	4000.00 4	500.00 5000.0	00 5500.00	6000.00
No.	Freque (MH		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4220.	000	53.99	-11.96	42.03	74.00	-31.97	peak
2 *	4230.	000	45.31	-11.96	33.35	54.00	-20.65	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 51 of 59

Tempera	ature:	26℃			Relative Hur	nidity:	54%	
Pressur	e:	1010) hPa					
Test Vol	tage:	AC 2	230V/50 H	7		110		HILL
Ant. Pol		Verti	ical		21 6	- 6	10/53	
Test Mo	de:	Mod	e 1	" OHI		A V		
Remark		No r	eport for th	e emission	below the pro	escribed	limit.	
90.0 dBu\					БО:ОП ШО Р			
80					F	N 55032 Clas	sB Radiation PEA	
70								
60					E	N 55032 Clas	sB Radiation AVG	
50					-			
40				1	and the same of	anther the second and	AND A PROPERTY OF THE PARTY OF	nadera pea
30 HARAMA	Andrew Angress Contraction	hipinanya	promise of some while property	2	gaglerika problem typogon polesondi	of applications of the property of the propert	Mahadhanagahanikaniadh	WHATELER
more	and the sales	سرفار الماره بهداله الدعابة	rpeduciol solvebandon	Mary Company of Company	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
20								
10								
0								
-10 1000.000	1500.00	2000.00	2500.00	8000.00 (MHz	4000.00	4500.00 5	5000.00 5500.	00 6000.00
1000.000	1300.00	2000.00	2300.00	8000.00 (MHz)	400.00	1300.00	3300.	00 0000.0C
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit		Detector
	(1411 12	-/	(abav)	(45,)	(aba v/iii)	(abavii	, (42)	

29.98

54.00

-24.02

AVG

Remark:

2 *

3215.000

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

43.66

-13.68

Page: 52 of 59

Attachment C--Voltage Fluctuation and Flicker Test Data

Temperature: 23.5℃ **Relative Humidity:** 54% Pressure: 1008 hPa **Test Voltage:** AC 230V/50 Hz **Test Mode:** Mode 1 Remark: Only showed test data of the worst mode Flicker Test Summary per EN/IEC61000-3-3 (Run time) **Test Result: Pass** Status: Test Completed Pst_i and limit line European Limits 1.00 0.75 °0.50 0.25 Plt and limit line _0.50 0.25 Parameter values recorded during the test: Vrms at the end of test (Volt): Test limit (%): Test limit (mS): Highest dt (%): T-max (mS): 500.0 **Pass**

0.00

0.00

0.264

0.115

Test limit (%): Test limit (%):

Test limit:

Test limit:

3.30

4.00

1.000

0.650

Pass

Pass

Pass

Pass

Highest dc (%):

Highest dc (%): Highest Pst (10 min. period): Highest Plt (2 hr. period):

Page: 53 of 59

Attachment D--Electrostatic Discharge Test Data

Location	Air Discharge	Contact Disc	charge	Criteria	Result
	Test Level(kV) and Result			
Power supply:	AC 230/50Hz	Test Mode:	Mode	1/2	
Pressure(hpa):	1008		an B	3	
Temperature:	23.5℃	Humidity:	54%		The same of the sa

					esi	Le	vei	(KV) a	na i	res	uit					Control of the Contro	
I costion			Air	Dis	cha	rge	4		8 6	Cor	ntac	t D	isc	har	ge		Cuitorio	Decult
Location		2	2	4	8	3	1	5		2	4	1	6	3	8	3	Criteria	Result
	+	-	+	(-1)	+) -	+	_	+	-	+	<u> </u>	+	-	+	7		Par
A1	Α	Α	Α	Α	Α	Α	1	1	/	1	/	1	1	1	1	/	В	PASS
A2	Α	Α	Α	Α	Α	Α	1	1	/	1	1	/	1	/	1	1	В	PASS
A3	Α	Α	Α	Α	Α	Α	/	/	/	1	1	/	1	/	1	/	В	PASS
A4	Α	Α	Α	Α	Α	Α	1	/	1	/	1	1	1	/	/	/	В	PASS
A5	Α	Α	Α	Α	Α	Α	1	/	1	1	/	/	1	/	1	/	В	PASS
A6	Α	Α	Α	Α	Α	Α	/	1	1	1	/	1	1	/	1	1	В	PASS
A7	Α	Α	Α	Α	Α	Α	/	1	1	1	1	1	/	/	/	/	В	PASS
A8	Α	Α	Α	Α	Α	Α	1	1	1	/	1	1	/	1	1	/	В	PASS
A9	Α	Α	Α	Α	Α	Α	1	1	1	1	/	/	/	1	1	1	В	PASS
													-					

1	70.2					W.	V				111	7.3				1	TALL	
		Test Level(I			l(k\	V) a	nd	Res	sult		1	11			ATT A			
	10	81/	1	HC	P	E	M	13	30			VC	P	Ŋ.				
Location		2	4	4	(6	8	3	- 2	2	4	4	6	3	8	3	Criteria	Result
	+	- (+		+	-	+	-	+		+	-	+	4	+			
Front	/	/	Α	Α	/	1	1	/	/	/	Α	Α	1	1	/	1	В	PASS
Back	1	/	Α	Α	/	1	1	1	1	/	Α	Α	/	/	1	1	В	PASS
Left	/	/	Α	Α	/	1	/	/	/	/	Α	Α	/	/	1	1	В	PASS
Right	/	1	Α	Α	1	1	/	/	/	/	Α	Α	1	/	1	1	В	PASS

Note: "/" Representative the test not applicable

Criteria A: There was no change operated with initial operating during the test.

Criteria B: The EUT function loss during the test, but self-recoverable after the test.

Criteria C: The system shut down during the test.

Page: 54 of 59

Note:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

Page: 55 of 59

Attachment E--RF Field Strength Susceptibility Test Data

: 23.8℃ Temperature Humidity : 50%

Pressure(hpa): 1008

Power supply : AC 230/50Hz Test Mode: Mode 1/2

Required Performance Criteria: A

	Ac	tual Perfor	mance Criteri	a	
EUT Position	Frequency 80~100		Frequency 1000~60		Judgment
	Horizontal	Vertical	Horizontal	Vertical	CODY.
Front	A	A	A	A	PASS
Right	Α	A	Α	Α	PASS
Rear	Α	A	A	A	PASS
Left	Α	A	A	Α	PASS

Page: 56 of 59

Attachment F--Electrical Fast Transient/Burst Test Data

Temperature : 23.5℃ Humidity : 54%

Pressure(hpa) : 1008

Power supply : AC 230/50Hz Test Mode : Mode 1/2

Required Performance Criteria: B

Line		Voltage(kV)		erformance eria		rformance eria	Judgment
110		ronago(m)	(+)	(-)	(+)	(-)	11177
	L	1.0	В	В	Α	Α	PASS
	N	1.0	В	В	Α	Α	PASS
	L-N	1.0	В	В	Α	A	PASS
AC LINE	PE	1.0	1 (1)	1	1	1	
	L-PE	1.0		1.00	1	100	1
	N-PE	1.0	U. Ber	1		1	C (A)
	L-N-PE	1.0	VIII	1	1		1
RJ 45 F	Port	0.5		WYDE	1	1	1

Remark:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

Page: 57 of 59

Attachment G--Surge Immunity Test Data

Temperature : 23.5℃ Humidity : 54%

Pressure(hpa): 1008

Power supply : AC 230/50Hz Test Mode : Mode 1/2

Required Performance Criteria: B

(Tr/Th: 1.2/50us for AC Power Port; Tr/Th: 10/700us for signal lines)

Injected Line	Voltage (kV)	Phase	Perfor	tual rmance teria	Res	sult
	(KV)		(+)	(-)	(+)	(-)
THE REPORT OF THE PERSON OF TH		0°	A	A	PASS	PASS
	1.0	90°	A	Α	PASS	PASS
L-N	1.0	180°	Α	A	PASS	PASS
	J W	270°	Α	A	PASS	PASS
	1000	0°	1	1		1
U DE	2.0	90°	V		1	1
L-PE	2.0	180°	1	1		1
		270°		1		1
W. D.	Will.	0°	1	1	1 0	1
NIDE	2.0	90°	1	1		1
N-PE	2.0	180°		1	1	1
	Aller	270°	1	181	1	1
RJ 45Port	1.0	+/-		1		

Page: 58 of 59

Attachment H--Conducted Immunity Test Data

Temperature : 23.5℃ Humidity : 54%

Pressure(hpa): 1008

Power supply : AC 230/50Hz Test Mode : Mode 1/2

Required Performance Criteria: A

Frequency Range (MHz)	Injected Position	Voltage Level (e.m.f.)	Required Performance Criteria	Actual Performance Criteria	Result
0.15 ~ 80	AC Mains	3V(rms), AM 80% Modulated with 1 kHz	Α	A	PASS
0.15 ~ 80	RJ 11	3V(rms), AM 80% Modulated with 1 kHz	A	1	V
0.15 ~ 80	Wired Network Port	3V(rms), AM 80% Modulated with 1 kHz	A	3 /	TOAY

Page: 59 of 59

Attachment I--Voltage Dips and Interruptions Test Data

Temperature :	23.5℃	Humidity:	54%
Pressure(hpa):	1008		
Power Supply :	AC 230/50H	Test Mode :	Mode 1/2
Required Performanc			
Test Results Description Voltage Reduction	Cycles	Required Performance Criteria	Judgment
Voltage dip 100%	0.5	В	PASS
Voltage dip 100%	1	В	PASS
Voltage dip 30%	25	C	PASS
Voltage Interruption100%	250	C	PASS

----END OF REPORT----

