

TEST REPORT

ETSI EN 301 489-1 V2.2.3 (2019-11)/ Draft ETSI EN 301 489-3 V2.1.2 (2021-03)/ ETSI EN 301 489-17 V3.2.4 (2020-09)/ EN 55032:2015 + A1:2020 + A11:2020/ EN 55035:2017 + A11:2020

Report Reference No...... HK2109153520-1ER

Compiled by

(position+printed name+signature)..: Testing engineer Len Liao

Supervised by

(position+printed name+signature)..: Technique principal Sliver Wan

Approved by

(position+printed name+signature)..: Manager Jason Zhou

Date of issue...... 2021/09/18

Representative Laboratory Name: Shenzhen HUAK Testing Technology Co., Ltd.

Address....... 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park,

Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Applicant's name...... XonTel Technology Trd. Co. W.LL

Kuwait City, Qibla, Aladel Tower, F21, state of Kuwait

Test specification:

Standard ETSI EN 301 489-1 V2.2.3 (2019-11)/

Draft ETSI EN 301 489-3 V2.1.2 (2021-03)/ ETSI EN 301 489-17 V3.2.4 (2020-09)/

EN 55032:2015 + A1:2020 + A11:2020/ EN 55035:2017 + A11:2020

TRF Originator...... Shenzhen HUAK Testing Technology Co., Ltd.

Master TRF..... Dated 2017-05

Shenzhen HUAK Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Wireless Access Point

Trade Mark N/A

Model/Type reference....: XT-1800AX

Listed Models N/A

Hardware Version..... V2.0

Software Version: V2.0

Rating DC 48V From POE power or DC 12V From DC Power

Result...... Positive

Page 2 of 44 Report No.: HK2109153520-1ER

TEST REPORT

Test Report No. : HK2109153520-1ER

2021/09/18

Date of issue

Equipment under Test : Wireless Access Point

Model /Type : XT-1800AX

Listed Models : N/A

Applicant : XonTel Technology Trd. Co. W.LL

Address : Kuwait City, Qibla, Aladel Tower, F21, state of Kuwait

Manufacturer : XonTel Technology Trd. Co. W.LL

Address : Kuwait City, Qibla, Aladel Tower, F21, state of Kuwait

(63)		
Test Result according to the standards on page 5:	Positive	
IG HUM	IG AND	 , Ca 1

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Report No.: HK2109153520-1ER

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	2021/09/18	Jason Zhou

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

Contents

Report No.: HK2109153520-1ER

1,016	TEST STANDARDS	"IAK"	= uU ^{AI*} 5
<u>2.</u>	SUMMARY		6
TING	THE THE THE		TING
2.1.	General Remarks		OK TEST 6
2.2.	Product Description		6 HUM
2.3.	Equipment under Test		7
2.4.	Short description of the Equipment under Test (EUT)	TING	7
2.5.	EUT operation mode		8
2.6.	EUT configuration		TESTIN 8
2.7.	Performance level		NAME 9
2.8.	Modifications		10
<u>3.</u>	TEST ENVIRONMENT		11 mg
OKTEST	MAKTES MAKTES	N. TESTA	MAKTES
HUM	I A MARINE THE TAXABLE PARTY OF THE PARTY OF		
3.1.	Information of the Test Laboratory		11
3.2.	Environmental conditions		11
3.3.	Configuration of Tested System		11
3.4.	Test Description		12
3.5.	Statement of the measurement uncertainty		12
3.6.	Equipments Used during the Test		13
-WG	TEGT 00 VDITIONS AND DEGULTS		4 =
<u>4.</u>	TEST CONDITIONS AND RESULTS	"IAKTES"	15
4.1.	REQUIREMENTS		15
	4.1.1. Radiated Emission		15
	4.1.2. Conducted Emission (AC Mains)		18
	4.1.3. Harmonic Current Emission		23
	4.1.4. Voltage Fluctuation and Flicker		24
	4.1.5. Electrostatic Discharge		25
	4.1.6. RF Electromagnetic Field		27
	4.1.7. Fast Transients Common Mode		29
	4.1.8. Surges, Line to Line and Line to Ground		31
	4.1.9. RF- Common Mode 0.15MHz to 80MHz		33
	4.1.10. Voltage Dips and Interruptions		34
	Why.		
5	TEST SET-UP PHOTOS OF THE EUT		3 5
THE	TESTING THE EUT	TESTING	
6.	PHOTOS OF THE EUT		.x ¹⁶⁵ 11116
<u>u .</u>	I II O I O O I I II E E O I	70009	30

1. TEST STANDARDS

The tests were performed according to following standards:

ETSI EN 301 489-1 V2.2.3 (2019-11)

ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential requirements of article 6 of Directive 2014/30/EU

Report No.: HK2109153520-1ER

Draft ETSI EN 301 489-3 V2.1.2 (2021-03)

ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU

ETSI EN 301 489-17 V3.2.4 (2020-09)

ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 17: Specific conditions for Broadband Data Transmission Systems; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU

<u>EN 55032:2015 + A1:2020 + A11:2020</u> Electromagnetic compatibility of multimedia equipment – Emission Requirements

EN 55035:2017 + A11:2020 Electromagnetic compatibility of multimedia equipment – Immunity requirements

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.1. General Remarks

Date of receipt of test sample	:	2021/09/06
. 163		er.
Testing commenced on	:	2021/09/06
ALL	W HU	HUAN
Testing concluded on	60	2021/09/18

2.2. Product Description

Name of EUT	Wireless Access Point
Model(s) Number	XT-1800AX
List Models	N/A THE THE THE THE
Difference descrption	N/A partie
Hardware version	V2.0
Software version	V2.0
Antenna Type	Internal Antenna

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 7 of 44 Report No.: HK2109153520-1ER

2.3. Equipment under Test

Power supply system utilised

Power supply voltage	:	С	120V / 60 Hz	0	115V / 60Hz
		С	12 V DC	0	24 V DC
TING		•	Other (specified in blank bel	ow)	TING

DC 48V From POE power or DC 12V From DC Power

2.4. Short description of the Equipment under Test (EUT)

For details, refer to the user's manual of EUT.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The equipment under test was operated during the measurement under the following conditions:

			Test Item		
EMI					
Mode 1	2.4GWIFI				
Mode 2	5GWIFI	-0	.0.	-0-	-0
EMS					
Mode 1	2.4GWIFI	HUAR HUAR	HUAR	HUAN.	HUAN
Mode 2	5GWIFI			9	

Report No.: HK2109153520-1ER

2.6. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O Supplied by the lab

STING	STING	STING	STING	
HUAKT	HUAKTE	HUAKT	HUAKTE	HUAKT
9				
	TESTING		TESTING	

●POE power information

N/A

The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test relative to a performance criteria defined by its manufacturer or the requestor of the test, or agreed between the manufacturer and the purchaser of the product. Examples of functions defined by the manufacturer to be evaluated during testing include, but are not limited to, the following:

Report No.: HK2109153520-1ER

- essential operational modes and states;
- tests of all peripheral access(hard disks, floppy disks, printers, keyboard, mouse, etc.);
- quality of software execution
- quality of data display and transmission
- quality of speech transmission

General performance criteria

- based on the used product standard
- O based on the declaration of the manufacturer, requestor or purchaser
- performance criteria A for immunity tests with phenomena of a continuous nature;
- performance criteria B for immunity tests with phenomena of a transient nature;
- performance criteria C for immunity tests with power interruptions exceeding a certain time. The equipment shall meet the minimum performance criteria as specified in the following clauses.

Performance table

Table 1: Performance criteria

Criteri	During test	After test			
Α.	Shall operate as intended.	Shall operate as intended.			
	May show degradation of performance	Shall be no degradation of performance (see note 2).			
	(see note 1).	Shall be no loss of function.			
	Shall be no loss of function.	Shall be no loss of stored data or user programmable			
	Shall be no unintentional transmissions.	functions.			
В	May show loss of function (one or more).	Functions shall be self-recoverable.			
	May show degradation of performance	Shall operate as intended after recovering.			
	(see note 1).	Shall be no degradation of performance (see note 2).			
	No unintentional transmissions.	Shall be no loss of stored data or user programmable functions.			
С	May be loss of function (one or more).	Functions shall be recoverable by the operator.			
		Shall operate as intended after recovering.			
		Shall be no degradation of performance (see note 2).			
NOTE 1:	IOTE 1: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance.				
	If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.				
NOTE 2:	(including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Performance criteria for Continuous phenomena applied to Transmitters (CT)

The performance criteria A shall apply.

Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an ACKnowledgement (ACK) or Not ACKnowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Report No.: HK2109153520-1ER

Performance criteria for Transient phenomena applied to Transmitters (TT)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply.

Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Continuous phenomena applied to Receivers (CR)

The performance criteria A shall apply.

Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Transient phenomena applied to Receivers (TR)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply.

Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

2.8. Modifications

No modifications were implemented to meet testing criteria.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3. TEST ENVIRONMENT

3.1. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd. 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Report No.: HK2109153520-1ER

Testing Laboratory Authorization: A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.3. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

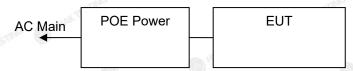


Table 2-1 Equipment Used in Tested System

No.	Product	Manufacture	Model No.	FCC ID
AK TST	POE Power	GRT	GRT-POE20-480050A	LAK TESTING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

ETSI EN 301 489-1/-3/-17 requirements	TESTING W.	TSTING	una 📵	
Radiated Emission	ETSI EN 301 489-1 V2.2.3 (2019 EN 55032:2015 + A1:2020 + A11		PASS	
Conducted Emission(AC Mains)	ETSI EN 301 489-1 V2.2.3 (2019	9-11) Clause 7.1	PASS	
Conducted Emission(Telcommunication Ports)	ETSI EN 301 489-1 V2.2.3 (2019 EN 55032:2015 + A1:2020 + A11	SIL	PASS	
Harmonic Current Emissions	ETSI EN 301 489-1 V2.2.3 (2019 EN IEC 61000-3-2:2019	9-11) Clause 7.1	N/A	
Voltage Fluctuations and Flicker	ETSI EN 301 489-1 V2.2.3 (2019 EN 61000-3-3:2013 + A1:2019	9-11) Clause 7.1	N/A	
Electrostatic Discharge	ETSI EN 301 489-1 V2.2.3 (2019	9-11) Clause 7.2	PASS	
RF Electromagnetic Field	ETSI EN 301 489-1 V2.2.3 (2019	9-11) Clause 7.2	PASS	
Fast Transients Common Mode	ETSI EN 301 489-1 V2.2.3 (2019	9-11) Clause 7.2	PASS	
RF Common Mode 0,15 MHz to 80 MHz	ETSI EN 301 489-1 V2.2.3 (2019	9-11) Clause 7.2	PASS	
Transients and Surges	ETSI EN 301 489-1 V2.2.3 (2019	9-11) Clause 7.2	N/A	
Voltage Dips and Interruptions	ETSI EN 301 489-1 V2.2.3 (2019	9-11) Clause 7.2	N/A	
Surges, Line to Line and Line to Ground	ETSI EN 301 489-1 V2.2.3 (2019	9-11) Clause 7.2	PASS	

Remark: The measurement uncertainty is not included in the test result.

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen HUAK Testing Technology Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.90dB	(1)
Radiated Emission	1~18GHz	4.28dB	(1)
Radiated Emission	18-40GHz	5.54dB	(1)
Conducted Disturbance	0.15~30MHz	2.71dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

ICATIO,

3.6. Equipments Used during the Test

CONDUCTED EMISSION

	Item	Kind of Equipment Manufacturer		Type No.	Serial No.	Last calibration		Calibra tion period
1	STITE	LISN	R&S	ENV216	HKE-002	Dec. 10, 2020	Dec. 09, 2021	1 year
	2	LISN	R&S	ENV216	HKE-029	Dec. 10, 2020	Dec. 09, 2021	1 year
lu.	3	EMI Test Receiver	R&S	ESR-7	HKE-005	Dec. 10, 2020	Dec. 09, 2021	1 year

RADIATED TEST SITE

	UUU'					- UD1	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
AK THE THE	Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 10, 2020	Dec. 09, 2021	1 year
2	EMI Test Receiver	R&S	ESR-7	HKE-010	Dec. 10, 2020	Dec. 09, 2021	1 year
3	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 10, 2020	Dec. 09, 2021	1 year
4	Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 10, 2020	Dec. 09, 2021	1 year
5	Preamplifie r	EMCI	EMC051845SE	HKE-015	Dec. 10, 2020	Dec. 09, 2021	1 year
6	Preamplifie r	Agilent	83051A	HKE-016	Dec. 10, 2020	Dec. 09, 2021	1 year
7	Position controller	Taiwan MF	MF7802	HKE-011	Dec. 10, 2020	Dec. 09, 2021	1 year

HARMONICS AND FILCK

U	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
TE	1 _G	Harmonic flicker tester	California Instruments	5001ix	HKE-037	Dec. 10, 2020	Dec. 09, 2021	1 year

Calibra

ESD

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	tion period
1	ESD device	Schloder	SESD 216	HKE-023	Dec. 10, 2020	Dec. 09, 2021	1 year
RS		MAKTES					
Item	Manufacturer Equipment		Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
1	Signal generator	Agilent	83630A	HKE-028	Dec. 10, 2020	Dec. 09, 2021	1 year
2	Hf antenna	Schwarzbeck	LB-180400-KF	HKE-031	Dec. 10, 2020	Dec. 09, 2021	1 year
3	Power R&S		NTWPA- 1060040E	HKE-035	Dec. 10, 2020	Dec. 09, 2021	1 year
4	Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 10, 2020	Dec. 09, 2021	1 year
5	Power amplifier	R&S	5225F	HKE-058	Dec. 10, 2020	Dec. 09, 2021	1 year

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

SURGE, EFT/BURST, VOLTAGE INTERRUPTION/DIPS

Iter	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
1	Full- featured immunity tester	HTEC	HV1P16T	HKE-017	Dec. 10, 2020	Dec. 09, 2021	1 year
2	Group pulse coupling clamp	HTEC	Н3С	HKE-024	Dec. 10, 2020	Dec. 09, 2021	1 year

INJECTION CURRENT

			1 1-1 -1-1 (1000)	-11/1/-	-C/1 VIIII		-1101	/ // (0000)
U	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
T	STI ^G	Integrated Conduction Sensitivity Test System	Schloder	CDG6000	HKE-033	Dec. 10, 2020	Dec. 09, 2021	1 year

PFMF

	I IVII			TES		TEN STEEL		
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration		Calibra tion period
3	1 JK TESTIN	Power frequency induction coil	HTEC Instruments Ltd.	HPFMF	HKE-049	Dec. 10, 2020	Dec. 09, 2021	1 year

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

A

4. TEST CONDITIONS AND RESULTS

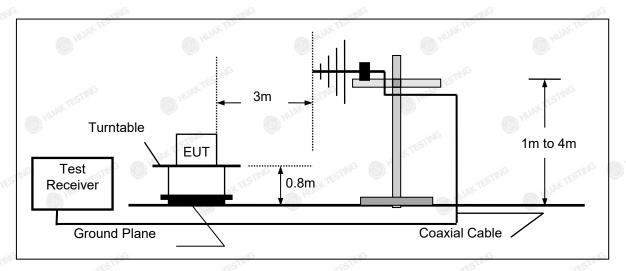
4.1. REQUIREMENTS

4.1.1. Radiated Emission

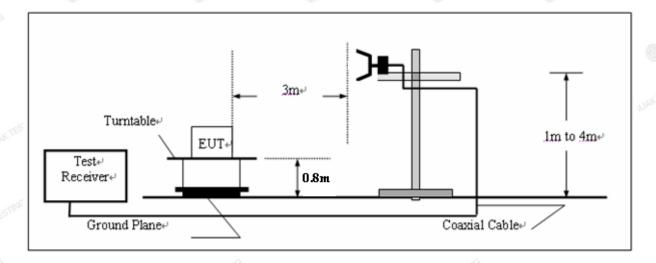
LIMIT

Please refer to ETSI EN 301 489-1 Clause 8.2.3

The ancillary equipment shall meet the class B limits given in CENELEC EN 55032 [1], annex A tables A.4 and A.5.


Report No.: HK2109153520-1ER

Alternatively, for ancillary equipment intended to be used exclusively in an industrial environment or telecommunication centres, the class A limits given in CENELEC EN 55032 [1], annex A tables A.2 and A.3 may be used.


If EUT is also a FM Receiver, it shall meet CENELEC EN 55032 [3], annex A tables A.6

TEST CONFIGURATION

(a) Radiated Emission Test Set-Up, Frequency below 1000MHz

(b) Radiated Emission Test Set-Up, Frequency above 1000MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

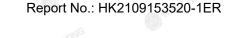
Please refer to ETSI EN 301 489-1 Clause 8.2.2 and The test method shall be in accordance with CENELEC EN 55032 [1], annex A.2. for the measurement methods.

Climatic conditions


■ ambient temperature : 25 °C

■ relative humidity: 55%

atmospheric pressure: 960 mbar


TEST RESULTS

Below 1000MHz

QP Detector

Suspected List												
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	64.6082	-16.32	43.03	26.71	40.00	13.29	100	16	Horizontal			
2	85.6319	-18.12	47.75	29.63	40.00	10.37	100	178	Horizontal			
3	104.7149	-15.41	46.54	31.13	40.00	8.87	100	351	Horizontal			
4	199.8066	-15.08	49.52	34.44	40.00	5.56	100	206	Horizontal			
5	290.0467	-12.84	45.01	32.17	47.00	14.83	100	275	Horizontal			
6	381.9040	-10.79	39.14	28.35	47.00	18.65	100	296	Horizontal			

QP Detector

Suspe	Suspected List										
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity		
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	35.1751	-16.09	54.40	38.31	40.00	1.69	100	285	Vertical		
2	63.3144	-15.99	56.80	40.81	40.00	-0.81	100	236	Vertical		
3	87.5725	-17.65	51.34	33.69	40.00	6.31	100	85	Vertical		
4	127.0323	-18.13	53.18	35.05	40.00	4.95	100	257	Vertical		
5	145.7919	-19.04	54.67	35.63	40.00	4.37	100	330	Vertical		
6	180.7236	-16.79	52.70	35.91	40.00	4.09	100	306	Vertical		

Final Data List											
	NO.	Freq. [MHz]	Factor [dB]	QP Reading [dBµV/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity	
	1	63.2649	-15.99	53.11	37.12	40.00	2.88	200	199.9	Vertical	

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

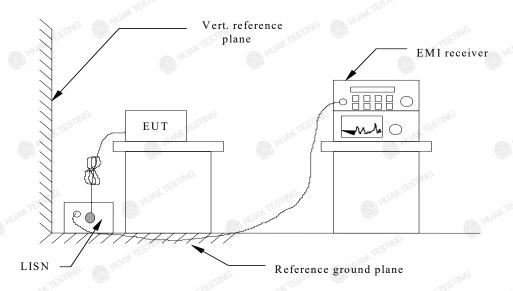
Radiated Emission From 1 GHz to 6 GHz

Frequency (MHz)	MaxPeak (dBuV/m)	Average (dBuV/m)	Limit (dBuV/m)	MaxPeak Margin (dB)	Average Margin (dB)	Height (cm)	Pol	Azimuth (deg)
1234.91	42.22	AK TES	70	27.78		100	V	© 14
1508.04	48.75	<u> </u>	70	21.25		100	V Tes	181
2340.46	45.65		70	24.35		100	ЭН	297
2846.23	49.63	JAK TESTIN	70	20.37	JAN TESTI	100	Н	261
3551.01	48.41) ho	74	25.59	(1) Y	100	V	82
3567.39	52.43		74	21.57		100	HHUAN	289

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.1.2. Conducted Emission (AC Mains)

LIMIT


Please refer to ETSI EN 301 489-1 Clause 8.4.3

The equipment shall meet the class B limits given in CENELEC EN 55032 [1], annex A table A.10.

Alternatively, for equipment intended to be used in an industrial environment or a telecommunication centre, the class A limits given in CENELEC EN 55032 [1], annex A table A.9 can be used.

If EUT is also a FM Receiver, it shall meet CENELEC EN 55032 [3], annex A tables A.13

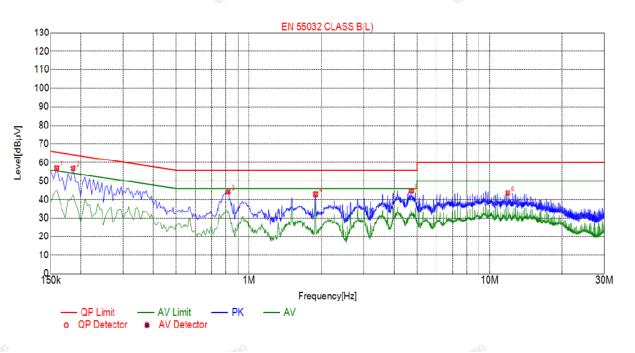
TEST CONFIGURATION

TEST PROCEDURE

Please refer to ETSI EN 301 489-1 Clause 8.4.3 and EN 55032 Clause 5 for the measurement methods.

Climatic conditions

■ ambient temperature : 25 °C


relative humidity: 55%

atmospheric pressure: 960 mbar

AFICATION

TEST RESULTS

Report No.: HK2109153520-1ER

Sus	Suspected List												
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре					
1	0.1590	57.10	20.01	65.52	8.42	37.09	PK	L					
2	0.1860	56.96	20.05	64.21	7.25	36.91	PK	L					
3	0.8205	44.11	20.06	56.00	11.89	24.05	PK	L					
4	1.8915	42.77	20.14	56.00	13.23	22.63	PK	L					
5	4.7265	44.53	20.26	56.00	11.47	24.27	PK	L					
6	11.8995	43.54	19.99	60.00	16.46	23.55	PK	L					

> > QP Limit
> > QP Detector

Report No.: HK2109153520-1ER

10M

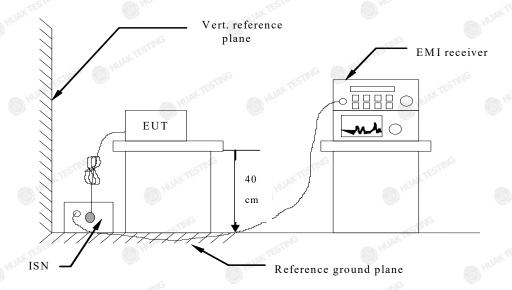
Sus	Suspected List													
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре						
1	0.1725	56.99	20.04	64.84	7.85	36.95	PK	N						
2	0.2130	52.61	20.05	63.09	10.48	32.56	PK	N						
3	0.8070	43.46	20.06	56.00	12.54	23.40	PK	N						
4	1.8870	41.68	20.14	56.00	14.32	21.54	PK	N						
5	4.6455	44.40	20.26	56.00	11.60	24.14	PK	N						
6	10.7610	43.53	20.02	60.00	16.47	23.51	PK	N						

Frequency[Hz]

Remark: Margin = Limit – Level
Correction factor = Cable lose + LISN insertion loss
Level=Test receiver reading + correction factor

Conducted Emission (Telecommunication Ports)

LIMIT


Please refer to ETSI EN 301 489-1 Clause 8.7.3

The wired network ports shall meet the class B limits given in CENELEC EN 55032 [1], annex A table A.12.

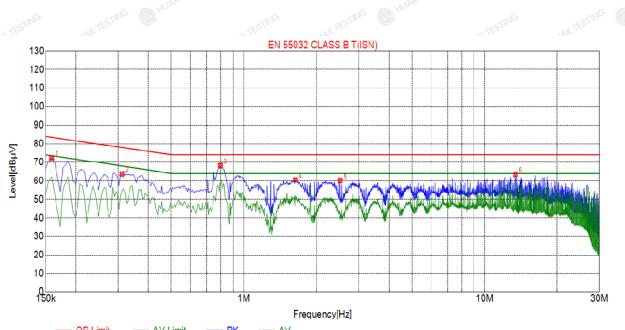
Alternatively, for equipment intended to be used exclusively in an industrial environment or a telecommunication centre, the class A limits given in CENELEC EN 55032 [1] annex A table A.11 can be used.

Report No.: HK2109153520-1ER

TEST CONFIGURATION

TEST PROCEDURE

Please refer to ETSI EN 301 489-1 Clause 8.7.2 and The test method shall be in accordance with CENELEC EN 55032 [1], annex A.3. for the measurement methods.


Climatic conditions

■ ambient temperature : 25 °C

relative humidity: 55%

atmospheric pressure: 960 mbar

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

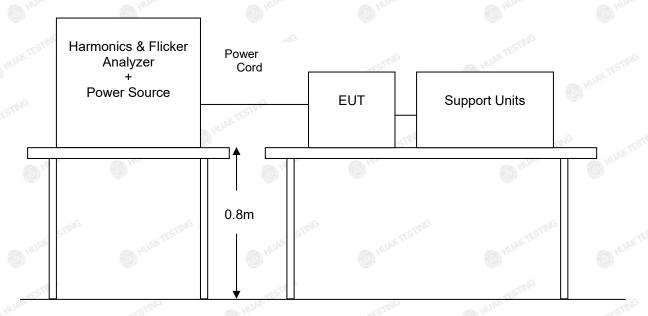
Sus	Suspected List												
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре					
1	0.1590	72.34	19.81	83.52	11.18	52.53	PK	ISN					
2	0.3120	63.72	19.85	77.92	14.20	43.87	PK	ISN					
3	0.7980	68.10	19.86	74.00	5.90	48.24	PK	ISN					
4	1.6350	60.45	19.92	74.00	13.55	40.53	PK	ISN					
5	2.5080	60.07	20.00	74.00	13.93	40.07	PK	ISN					
6	13.4205	63.40	19.80	74.00	10.60	43.60	PK	ISN					

Remark: Margin = Limit – Level

QP Detector

AV Detector

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor



4.1.3. Harmonic Current Emission

LIMIT

Please refer to EN 61000-3-2

TEST CONFIGURATION

TEST PROCEDURE

Please refer to EN 61000-3-2 for the measurement methods.

Climatic conditions

ambient temperature : 25 $\,^\circ\mathrm{C}$

relative humidity: 55%

atmospheric pressure: 960 mbar

TEST RESULTS

EUT is test by DC power supply, so this test report is not applicable.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.1.4. Voltage Fluctuation and Flicker

LIMIT

Please refer to EN 61000-3-3

TEST CONFIGURATION

Same as the configuration of the Harmonic Current Emission.

TEST PROCEDURE

Please refer to EN 61000-3-3 for the measurement methods.

Climatic conditions

■ ambient temperature : 25 °C

■ relative humidity: 55%

atmospheric pressure: 960 mbar

TEST RESULTS

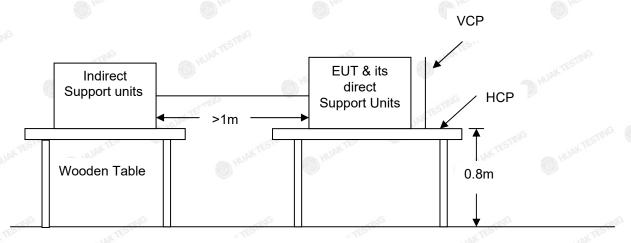
EUT is test by DC power supply, so this test report is not applicable.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4.1.5. Electrostatic Discharge

LIMIT

Please refer to EN 61000-4-2


SEVERITY LEVELS OF ELECTROSTATIC DISCHARGE

Test level: Contact Discharge at ± 2 KV, ± 4 KV Air Discharge at ± 2 KV, ± 4 KV, ± 8 KV

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)				
(1) HO.	2	2				
2	4	4 TESTING				
3	MG MANN 6	8 HUNN				
4 HUAKTE	8 JAK TEST	15				
X	Special	Special				

Performance criterion: B

Test Configuration

Ground Reference Plane

Test procedure

Please refer to ETSI EN 301 489-1 Clause 9.3.2 and EN 61000-4-2 for the measurement methods.

If EUT is also a FM Receiver, it shall refer to EN 55020:2007/A11:2011 Clause 5.9 for the measurement methods.

Test results

Contact Discharge:

The ESD generator is held perpendicular to the surface to which the discharge is applied and the tip of the discharge electrode touch the surface of EUT. Then turn the discharge switch. The generator is then retriggered for a new single discharge and repeated at least 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed

Air Discharge:

The results shair discharge is used where contact discharge can't be applied. The round discharge tip of the discharge by HUAK, this documenteetrode shall be approached as fast as possible to touch the EUT: After each discharge, the discharge/www.cer-mark.com

electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated at least 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

Report No.: HK2109153520-1ER

Indirect discharge for horizontal coupling plane:

At least 10 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT.

Indirect discharge for vertical coupling plane:

At least 10 single discharges shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

Climatic conditions

■ ambient temperature : 25°C

■ relative humidity: 55%

atmospheric pressure: 960 mbar

■ TEST RESULTS

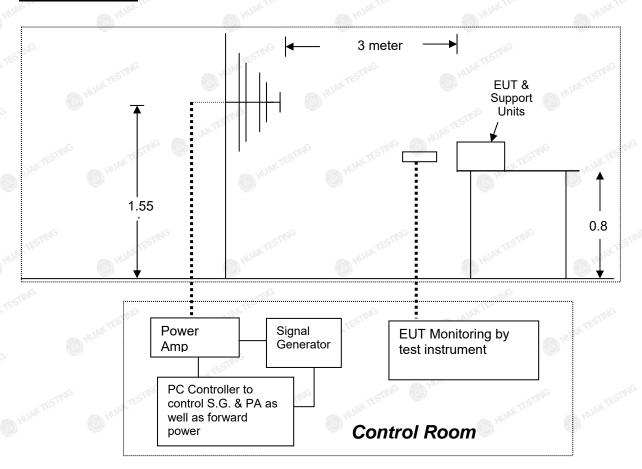
TV	Mode		Air Discharge							Contact Discharge					ge	Crista via va	Dogult		
	Test level (kV)	4	1	8	3	1	0	1	5	2	2	2	ļ	(3	8	3	Criterion	Result
	Test Location	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-		
	HCP		JG.	<i>6</i> 80.	UAN					Α	Α	Α	Α	G	M AR	JAK			PASS
	VCP	TES		9				, ak	ESTI	Α	Α	Α	Α	,				LAX TESTING	PASS
H	Metallic parts									Α	Α	Α	Α					В	PASS
	enclosure	Α	Α	Α	Α														PASS
	slot	Α	Α	Α	Α			-6	MG				-6	ING				STING	PASS

Note:

- 1) +/- denotes the Positive/Negative polarity of the output voltage.
- 2) Test condition:
 - Direct / Indirect (HCP/VCP) discharges: Minimum 50 times (Positive/Negative) at each point. Air discharges: Minimum 10 times (Positive/Negative) at each point.
- 3) Test location(s) in which discharge (Air and contact discharge) to be applied illustrated by photos shown in next page(s)
- 4) The Indirect (HCP/VCP) discharges description of test point as following: 1.left side 2.right side 3.front side 4.rear side
- 5) N/A denotes test is not applicable in this test report

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.cor

IUAN TESTING


Report No.: HK2109153520-1ER

4.1.6. RF Electromagnetic Field

LIMIT

Please refer to EN 61000-4-3

Test Configuration

Test Levels of RF Electromagnetic Field

Test level: RF Field Strength: 3V/m

Level	RF	(V/m)	
HU 1		1 June	
2	ESTING	3	ESTING
3	NG HUAK	10	OF HUAK
X		Special	TESTIL

Performance criterion: A

TEST PROCEDURE

Please refer to ETSI EN 301 489-1 Clause 9.2.2 and EN 61000-4-3 for the measurement methods.

■ ambient temperature : 25 °C

■ relative humidity: 55%

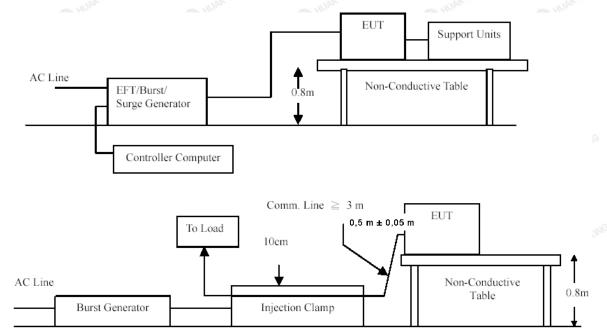
■ atmospheric pressure: 960 mbar

TEST RESULTS

Result of Final Tests (Operating Mode & Standby (Receiving) Mode)

	Freq. Range (MHz)	Field	Modulation	Polarity	Position	Mode	Result (Pass/Fail)
0	80-6000	3V/m	Yes	H/V	Front		Pass
UNATESTIVI	$1800(\pm 1\%),$ $2600(\pm 1\%),$ $3500(\pm 1\%),$ $5000(\pm 1\%)$	3V/m	Yes	H/V	Front	Normal Operating	Pass
TESTING 2	80-6000	3V/m	Yes	H/V	Right		Pass
	$1800(\pm 1\%),$ $2600(\pm 1\%),$ $3500(\pm 1\%),$ $5000(\pm 1\%)$	3V/m	Yes	H/V	Right	Normal Operating	Pass
	80-6000	3V/m	Yes	_№ H/V	Back		Pass
3 4444	1800(±1%), 2600(±1%), 3500(±1%), 5000(±1%)	3V/m	Yes	H/V	Back	Normal Operating	Pass
JAKTEST	80-6000	3V/m	Yes	H/V	Left	JK TESTI	Pass
4 ESTIVE	1800(±1%), 2600(±1%), 3500(±1%), 5000(±1%)	3V/m	Yes	H/V	Left	Normal Operating	Pass

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



4.1.7. Fast Transients Common Mode

LIMIT

Please refer to EN 61000-4-4

TEST CONFIGURATION

TEST PROCEDURE

Please refer to ETSI EN 301 489-1 Clause 9.4.2 and EN 61000-4-4 for the measurement methods.

If EUT is also a FM Receiver, it shall refer to EN 55020:2007/A11:2011 Clause 5.6 for the measurement methods.

Climatic conditions

■ ambient temperature : 25 °C

■ relative humidity: 55%

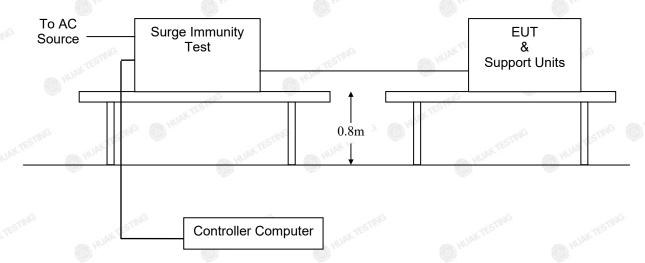
atmospheric pressure: 960 mbar

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

		-C /Ch	Ho				C ATTACHED				-C- 40h
					Ocitorio	Result					
Соц	upling Line	0).5		1	2	2		4	Criterion	Result
		+	-	+	-	+	-	+	-		
ESTING	L	ESTING		HUAKTESTIN	3	WAK TEE	MIG	H	AK TESTING	HUA	TESTING
G	N		0	\G		33			J.G	(I)	
4.0	PE		HUAY	TESTIL		ESTING		HUAKT	5711	ESTIN	3
AC line	L+N				HUP					HUAKTE	
	L+PE		WAK TESTIN	3				AK TESTING		В	
Y TESTIN	N+PE	LING (1)		TE	TING	NK TESTI	e @		TEST	gG LOKT	STING (1)
pr	L+N+PE			HUAN	- 6	HO.		6	HUAN	O HO	
	OC Line										
Sig	gnal Line	Α	А	TESTIN	3	, TE	MG		TESTING		PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

STING STING


Report No.: HK2109153520-1ER

4.1.8. Surges, Line to Line and Line to Ground

LIMIT

Please refer to EN 61000-4-5

TEST CONFIGURATION

TEST PROCEDURE

Please refer to ETSI EN 301 489-1 Clause 9.4.2 and EN 61000-4-5 for the measurement methods.

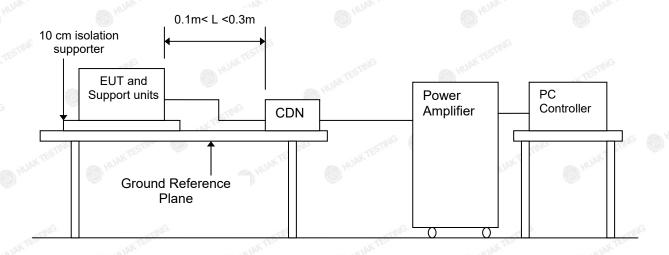
Climatic conditions

■ ambient temperature : 25 °C

■ relative humidity: 55%

atmospheric pressure: 960 mbar

С	Coupling Line		0.5	kV	1	kV	2	kV	4	kV	Criterion	Result
			+	-	+	-	+	-	+	-		
ESTING		0°			TING		777	G		TING		TING
ES	L-N	90°		HUA	TED		HUAKTES		WHU W	KTES	MIN HUAV	TEST
	L-IN	180°							9		9	
DIS.		270°		MAKTEST	Vers		-mG		TAKTES	Ung	and the same of th	3
	THAK TE	0°	6			WAK T	5	-	9		HUAK TESTIL	
AC) DE	90°		CING					CTING		В	
line	L-PE	180°	HUAK	(E)			.NG	HUA	100			NG AN
AK TESTIN		270°			JAKTESTIN	- 4	AKTESTI			LAKTEST	O HUAKT	STILL
100	.	0°		(3)		9			0	Ac.	O	
	N-PE	90°										
ESTING	IN-PE	180°	3		CSTING		TST!	G		TSTING		ESTING
	6	270°		HUA			HUAKIL		HU	N. C.	MIN HUA	
G	DC Lin	е			.G					G		
	Signal Li	ne	Α	ATES	17.0		TING		MAKTES	In.	TIN	PASS



4.1.9. RF- Common Mode 0.15MHz to 80MHz

LIMIT

Please refer to EN 61000-4-6

TEST CONFIGURATION

TEST PROCEDURE

Please refer to ETSI EN 301 489-1 Clause 9.5.2 and EN 61000-4-6 for the measurement methods.

Climatic conditions

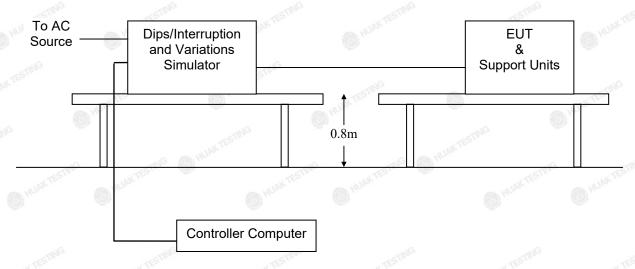
■ ambient temperature : 25 °C

■ relative humidity: 55%

■ atmospheric pressure: 960 mbar

TEST RESULTS

1,0021	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 15 12 1		1, (1) (2) (1)	1.00.217
Test Ports (Mode)	Freq. Range MHz)	Field Strength	Perform. Criteria	Results	Judgment
Input/ Output AC. Power Port	0.1580	HUAKTE	A	N/A	N/A
Input/ Output DC. Power Port	0.15 80	3V(rms) AM Modulated	CTESTING A HUAKTE	N/A	N/A
Signal Line	0.15 80	1000Hz, 80%	Α	A A	PASS



1.1.10. Voltage Dips and Interruptions

LIMIT

Please refer to EN 61000-4-11

TEST CONFIGURATION

TEST PROCEDURE

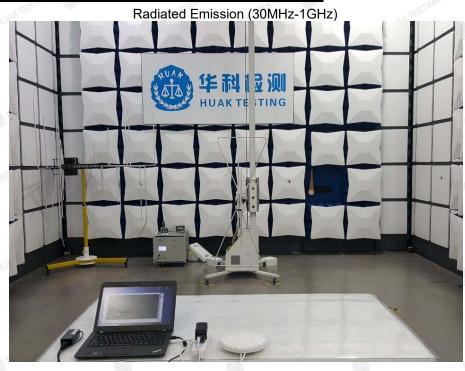
Please refer to ETSI EN 301 489-1 Clause 9.7.2 and EN 61000-4-11 for the measurement methods

Climatic conditions

■ ambient temperature : 25 °C

■ relative humidity: 55%

■ atmospheric pressure: 960 mbar


TEST RESULTS

EUT is test by DC power supply, so this test report is not applicable.


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

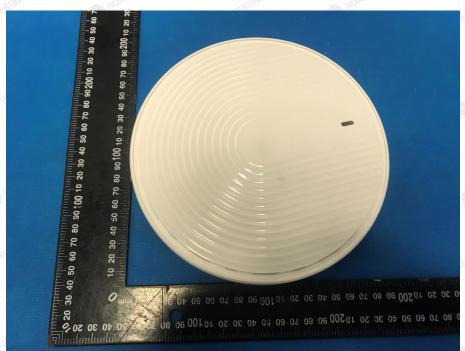
5. Test Set-up Photos of the EUT

Report No.: HK2109153520-1ER

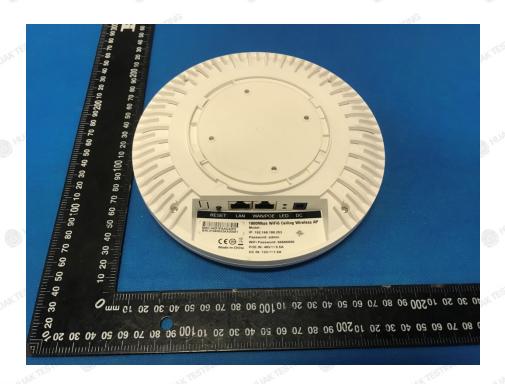
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

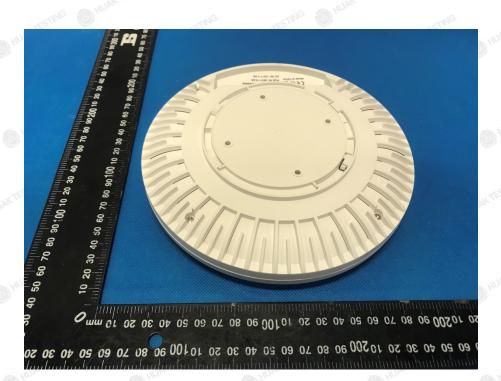
Conducted Emission

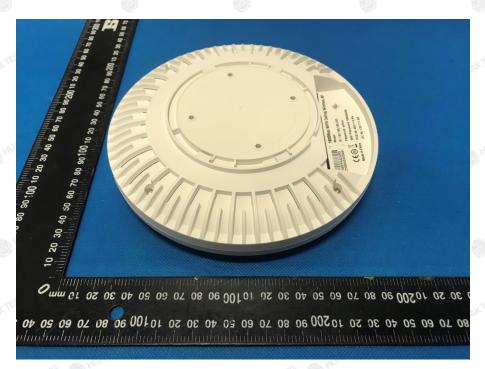
Report No.: HK2109153520-1ER

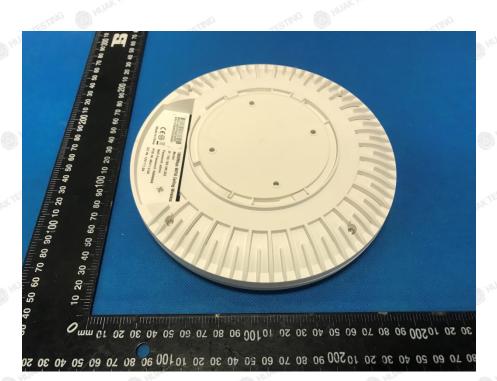


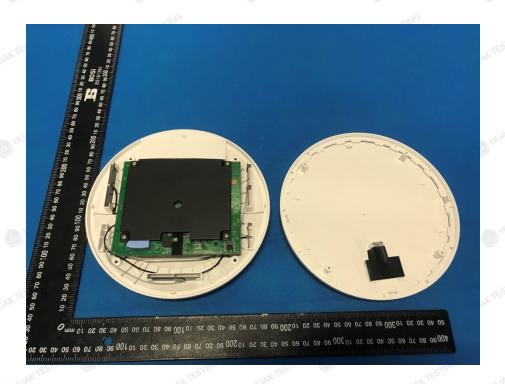
6. PHOTOS OF THE EUT



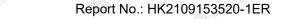

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

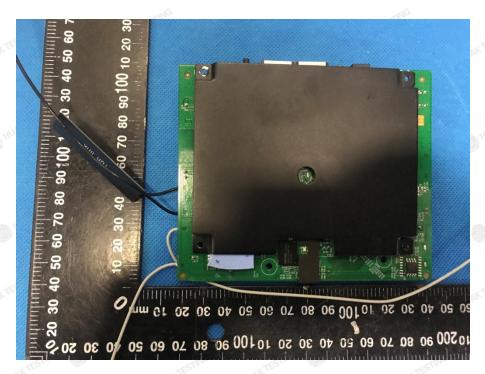


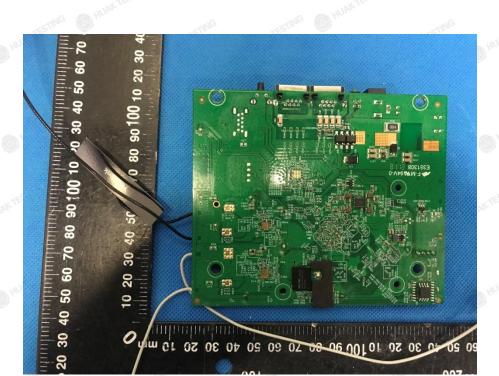











HUAK TESTING

.....End of Report.....