Page 1 of 34 Report No.:VTC-2212231015E1

CE EMC TEST REPORT

Report No.: VTC-221223015E1

Product: XT-2300G 24 Port PoE Gigabit POE Switch

Model No.: XT-2300G

Applicant: XonTel Technology Trd. Co. W.L.L

Address: Kuwait City, Qibla, Aladel Tower, F21, State of

Kuwait

Issued by: Shenzhen VTC Testing Technology Co., Ltd.

211 Factory Room, No. 96, Yangchong Road, Tangxiachong

Lab Location: Community, Yanluo Street, Bao'an District,

Shenzhen, Guangdong, China

Date of Receipt: Dec.16, 2022 Date of Test:

Dec.16, 2022 to Dec.23, 2022

Date of Issue: Dec.23, 2022

Test Result: Pass

Testing Engineer

Technical Manager

Authorize Signatory

(Fan Lian)

VTC

approved

(Jesse Liu)

Son Way

This test report consists of 34 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by VTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to VTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Page 2 of 34 Report No.: VTC-221223015E1

TABLE OF CONTENT

rest Report Declaration	Page
1. GENERAL INFORMATION	5
1.1. Description of Device (EUT)	5
1.2. Tested System Details	5
1.3. TEST SÚMMARY	
2. TEST INSTRUMENT USED	6
3. CONDUCTED EMISSION AT THE MAINS TERMINALS TES	ST9
3.1. Block Diagram Of Test Setup	9
3.2. Test Standard	9
3.3. Power Line Conducted Emission Limit	
3.4. EUT Configuration on Test	
3.5. Operating Condition of EUT	
3.7. Test Result	
4. RADIATION EMISSION TEST	
4.1. Block Diagram of Test Setup	
4.2. Test Standard	
4.3. Radiation Limit	
4.4. EUT Configuration on Test	
4.5. Operating Condition of EUT	
4.6. Test Procedure	
4.7. Test Result	
5. HARMONIC CURRENT EMISSION TEST	
5.1. Block Diagram of Test Setup	
5.2. Test Standard5.3. Operating Condition of EUT	
5.4. Test Procedure	
5.5. Test Results	
6. VOLTAGE FLUCTUATIONS & FLICKER TEST	
6.1. Block Diagram of Test Setup	16
6.2. Test Standard	16
6.3. Operating Condition of EUT	
6.4. Test Procedure	
6.5. Test Results	
7. ELECTROSTATIC DISCHARGE IMMUNITY TEST	
7.1. Block Diagram of Test Setup	
7.2. Test Standard	
7.4. EUT Configuration	
7.5. Operating Condition of EUT	18
7.6. Test Procedure	
7.7. Test Results	
8. RF FIELD STRENGTH SUSCEPTIBILITY TEST	20
8.1. Block Diagram of Test Setup	
8.2. Test Standard	
8.3. Severity Levels and Performance Criterion	
8.4. EUT Configuration on Test	21
8.6. Test Procedure	
8.7. Test Results	

9. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	23
9.1. Block Diagram of EUT Test Setup	
9.2. Test Standard	
9.3. Severity Levels and Performance Criterion	23
9.4. EUT Configuration on Test	24
9.5. Operating Condition of EUT	
9.6. Test Procedure	
9.7. Test Results	24
10. SURGE TEST	25
10.1. Block Diagram of EUT Test Setup	25
10.2. Test Standard	25
10.3. Severity Levels and Performance Criterion	
10.4. EUT Configuration on Test	
10.5. Operating Condition of EUT	
10.6. Test Procedure	
10.7. Test Result	
11. INJECTED CURRENTS SUSCEPTIBILITY TEST	27
11.1. Block Diagram of EUT Test Setup	27
11.2. Test Standard	
11.3. Severity Levels and Performance Criterion	
11.4. EUT Configuration on Test	
11.5. Operating Condition of EUT	28
11.6. Test Procedure	
11.7. Test Result	
12. AGNETIC FIELD IMMUNITY TEST	
12.1. Block Diagram of Test Setup	29
12.2. Test Standard	
12.3. Severity Levels and Performance Criterion	
12.4. EUT Configuration on Test	
12.5. Operating Condition of EUT	
12.6. Test Procedure	
12.7. Test Results	
13. VOLTAGE DIPS AND INTERRUPTIONS TEST	
13.1. Block Diagram of EUT Test Setup	
13.2. Test Standard	
13.3. Severity Levels and Performance Criterion	
13.4. EUT Configuration on Test	
13.5. Operating Condition of EUT	
13.6. Test Procedure	
13.7. Test Result	
14. EUT PHOTOGRAPHS	33

VIS

Report No.: VTC-221223015E1

INFORMATION

Applicant : XonTel Technology Trd. Co. W.L.L

Address : Kuwait City, Qibla, Aladel Tower, F21, State of Kuwait

Manufacturer : XonTel Technology Trd. Co. W.L.L

Address : Kuwait City, Qibla, Aladel Tower, F21, State of Kuwait

EUT : industrial ethernet switch

Model Number : XT-2300G

Trademark : N/A

EN 55032:2015+A1:2020+A11:2020

EN 55035:2017+A11:2020

Test Standard : EN 95053.2017 +A11.2020 EN IEC 61000-3-2:2019/A1:2021

EN 61000-3-3: 2013+A1:2019

Test Result: : Pass

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : XT-2300G 24 Port PoE Gigabit POE Switch

Trademark : N/A

Model Number : XT-2300G

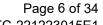
Model Difference : All models are identical except for appearance color and the

number of prototypes differ

Power Supply : 100-240Vac

1.2. Tested System Details

Personal Computer : ASUS


M/N: XT-2300G

1.3. TEST SUMMARY

Conducted Emission : ±2.66dB

Uncertainty

Radiated Emission Uncertainty: ±4.26dB

2. TEST INSTRUMENT USED

For Conducted Emission at the mains terminals Test

	Conducted Emission Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
843 Shielded Room	ChengYu	843 Room	843	July.07, 2022	July.06, 2023		
EMI Receiver	R&S	ESCI	101421	July.07, 2022	July.06, 2023		
LISN	Schwarzbeck	NSLK8127	8127739	July.07, 2022	July.06, 2023		
Attenuator	R&S	ESH3-Z2	021E	July.07, 2022	July.06, 2023		
843 Cable 1#	FUJIKURA	843C1#	001	July.07, 2022	July.06, 2023		

For Conducted Emission at the telecom port Test

Conducted Emission Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
843 Shielded Room	ChengYu	843 Room	843	July.07, 2022	July.06, 2023	
EMI Receiver	R&S	ESCI	101421	July.07, 2022	July.06, 2023	
Coupling/ Decoupling Network	PH	ISN T800	S1509001	July.07, 2022	July.06, 2023	
Attenuator	R&S	ESH3-Z2	021E	July.07, 2022	July.06, 2023	
843 Cable 1#	FUJIKURA	843C1#	001	July.07, 2022	July.06, 2023	

For Radiated Emission Test

Radiation Emission Test (966 chamber)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
966 chamber	ChengYu	966 Room	966	July.07, 2022	July.06, 2022	
Spectrum Analyzer	Agilent	E4407B	MY45109572	July.07, 2022	July.06, 2023	
Amplifier	Schwarzbeck	BBV9743	9743-119	July.07, 2022	July.06, 2023	
Amplifier	Schwarzbeck	BBV9718	9718-270	July.07, 2022	July.06, 2023	
Log-periodic Antenna	Schwarzbeck	VULB9160	VULB9160-3 369	July.07, 2022	July.06, 2023	
EMI Receiver	R&S	ESCI	101421	July.07, 2022	July.06, 2023	
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1275	July.07, 2022	July.06, 2023	
966 Cable 1#	CHENGYU	966	004	July.07, 2022	July.06, 2023	
966 Cable 2#	CHENGYU	966	003	July.07, 2022	July.06, 2023	

For Harmonic & Flicker Test

For Harmonic / Flicker Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Harmonic / Flicker Analyzer	KIKUSUI	KHA1000	VA002445	July.07, 2022	July.06, 2023	
AC Power Supply	KIKUSUI	PCR4000M	UK001879	July.07, 2022	July.06, 2023	
Line Impedance network	KIKUSUI	LIN1020JF	UL001611	July.07, 2022	July.06, 2023	

For Electrostatic Discharge Immunity Test

For Electrostatic Discharge Immunity Test (A site)						
Equipment	Equipment Manufacturer Model# Serial# Last Cal. Next Cal.					
ESD Tester	KIKISUI	KES4201A	UH002321	July.07, 2022	July.06, 2023	

For RF Field Strength Susceptibility Test(SMQ)

	For RF Field Strength Susceptibility Test (SMQ site)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Signal Generator	HP	8648A	3625U00573	July.07, 2022	July.06, 2023			
Amplifier	A&R	500A100	17034	July.07, 2022	July.06, 2023			
Amplifier	A&R	100W/1000M1	17028	July.07, 2022	July.06, 2023			
Audio Analyzer (20Hz~1GHz)	Panasonic	2023B	202301/428	July.07, 2022	July.06, 2023			
Isotropic Field Probe	A&R	FP2000	16755	July.07, 2022	July.06, 2023			
Antenna	EMCO	3108	9507-2534	July.07, 2022	July.06, 2023			
Log-periodic Antenna	A&R	AT1080	16812	July.07, 2022	July.06, 2023			

For Electrical Fast Transient /Burst Immunity Test

For Electrical Fast Transient/Burst Immunity Test (A site)						
Equipment Manufacturer Model# Serial# Last Cal. Next Ca					Next Cal.	
Burst Tester	Prima	EFT61004AG	PR14054467	July.07, 2022	July.06, 2023	
Coupling Clamp	Prima	EFT61004AG	009E	July.07, 2022	July.06, 2023	

For Surge Test

For Surge Test (A site)						
Equipment Manufacturer Model# Serial# Last Cal. Next Cal					Next Cal.	
Surge Tester	Prima	SUG61005BX	PR12045446	July.07, 2022	July.06, 2023	

For Injected Currents Susceptibility Test

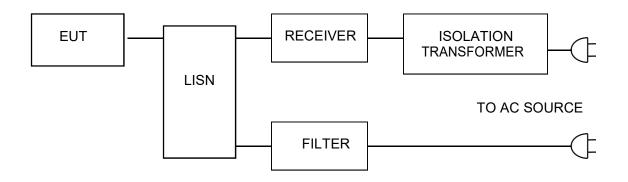
	. c. mjested editerite edeceptionity rest							
	For Injected Currents Susceptibility Test (A site)							
Equipment Manufacturer Model# Serial# Last Cal. Next Cal.								
C/S Test System	SCHLODER	CDG600	126B1281	July.07, 2022	July.06, 2023			
CDN	SCHLODER	CDN-M2+3	A2210320/201 5	July.07, 2022	July.06, 2023			
Injection Clamp	SCHLOBER	EMCL-20	132A1214/201 5	July.07, 2022	July.06, 2023			

For Magnetic Field Immunity Test

For Magnetic Field Immunity Test (A site)					
Equipment Manufacturer Model# Serial# Last Cal. Next Cal.					Next Cal.
Magnetic field generator	HTEC	HPFMF	15701	July.07, 2022	July.06, 2023

For Voltage Dips Interruptions Test

For Voltage Dips Interruptions Test (A site)					
Equipment	Equipment Manufacturer Model# Serial# Last Cal. Next Cal.				Next Cal.
Dips Tester	Prima	DRP61011AG	PR14086284	July.07, 2022	July.06, 2023


Page 9 of 34

Report No.: VTC-221223015E1

CONDUCTED EMISSION AT THE MAINS TERMINALS TEST

3.1. Block Diagram Of Test Setup

3.2. Test Standard

EN 55032:2015

3.3. Power Line Conducted Emission Limit

Frequency	Limits dB(μV)			
MHz	Quasi-peak Level	Average Level		
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*		
0.50 ~ 5.00	56	46		
5.00 ~ 30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.4. EUT Configuration on Test

The following equipments are installed on conducted emission test to meet EN 55032 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.5. Operating Condition of EUT

- 3.5.1 Setup the EUT and simulators as shown in Section 3.1.
- 3.5.2 Turn on the power of all equipments.
- 3.5.3 Let the EUT work in test modes and test it.

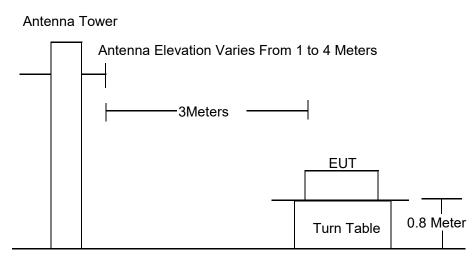
3.6. Test Procedure

The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the EN 55032 regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESCI) is set at 10KHz.

The frequency range from 150 KHz to 30 MHz is investigated.

3.7. Test Result


Page 11 of 34

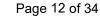
Report No.: VTC-221223015E1

4. RADIATION EMISSION TEST

4.1. Block Diagram of Test Setup

Ground Plane

4.2. Test Standard


EN 55032:2015

4.3. Radiation Limit

Frequency	Distance	Field Strengths Limits	Detector
MHz	(Meters)	dB(μV)/m	
30 ∼ 230	3	40.0	QP
230 ~ 1000	3	47.0	QP
1000 ~ 3000	3	76.0	PEAK
1000 ~ 3000	3	56.0	AVERAGE
$3000\sim6000$	3	80.0	PEAK
$3000\sim6000$	3	60.0	AVERAGE

Remark:

- (1) Emission level (dB(μ V)/m) = 20 log Emission level (μ V/m)
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument, antenna and the closed point of any part of the device or system.

4.4. EUT Configuration on Test

The EN 55032 regulations test method must be used to find the maximum emission during radiated emission test.

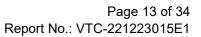
The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.2.

4.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.2 except the test set up replaced as Section 4.1.

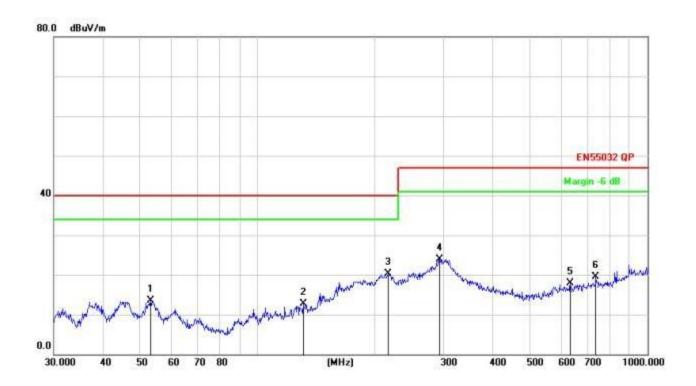
4.6. Test Procedure

The EUT and its simulators are placed on a turned table that is 0.8 meter above the ground. The turned table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna that is mounted on the antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated biconical and log periodical antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. In order to find the maximum emission levels, the interface cable must be manipulated according to EN 55032 on radiated emission test.

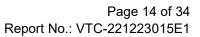

The bandwidth setting on the field strength meter (R&S Test Receiver ESCI) is set at 120KHz below 1GHz, set at 1MHz above 1GHz The frequency range from 30MHz to 1000MHz is checked.

The highest frequency of the internal sources of the EUT was below 108MHz, so the measurement was only made up to 1GHz.

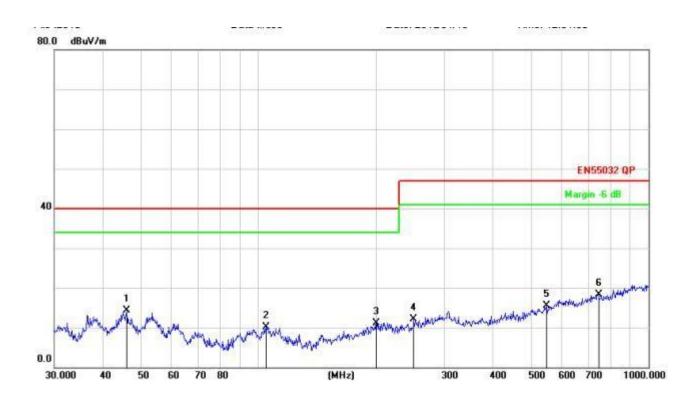
4.7. Test Result


PASS

Please refer to the following page.



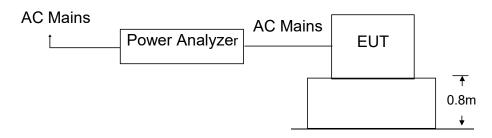
Radiation Emission Test Data						
Temperature: 24.1 °C Relative Humidity: 69%						
Pressure:	1009hPa	Phase :	Horizontal			
Test Voltage :	230V	Test Mode:	ON Mode			



Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
	53.1313	27.87	-14.46	13.41	40.00	-26.59	QP			
	130.8369	31.79	-19.09	12.70	40.00	-27.30	QP			
*	216.0240	36.59	-16.19	20.40	40.00	-19.60	QP			
	293.0842	37.83	-13.84	23.99	47.00	-23.01	QP			
1	633.9073	24.35	-6.52	17.83	47.00	-29.17	QP			
1 1	737.0714	24.45	-5.00	19.45	47.00	-27.55	QP			
		MHz 53.1313 130.8369 * 216.0240 293.0842 633.9073	Mk. Freq. Level MHz dBuV 53.1313 27.87 130.8369 31.79 * 216.0240 36.59 293.0842 37.83 633.9073 24.35	Mk. Freq. Level Factor MHz dBuV dB 53.1313 27.87 -14.46 130.8369 31.79 -19.09 * 216.0240 36.59 -16.19 293.0842 37.83 -13.84 633.9073 24.35 -6.52	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 53.1313 27.87 -14.46 13.41 130.8369 31.79 -19.09 12.70 * 216.0240 36.59 -16.19 20.40 293.0842 37.83 -13.84 23.99 633.9073 24.35 -6.52 17.83	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dB/m 53.1313 27.87 -14.46 13.41 40.00 130.8369 31.79 -19.09 12.70 40.00 * 216.0240 36.59 -16.19 20.40 40.00 293.0842 37.83 -13.84 23.99 47.00 633.9073 24.35 -6.52 17.83 47.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB 53.1313 27.87 -14.46 13.41 40.00 -26.59 130.8369 31.79 -19.09 12.70 40.00 -27.30 * 216.0240 36.59 -16.19 20.40 40.00 -19.60 293.0842 37.83 -13.84 23.99 47.00 -23.01 633.9073 24.35 -6.52 17.83 47.00 -29.17	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB Detector 53.1313 27.87 -14.46 13.41 40.00 -26.59 QP 130.8369 31.79 -19.09 12.70 40.00 -27.30 QP * 216.0240 36.59 -16.19 20.40 40.00 -19.60 QP 293.0842 37.83 -13.84 23.99 47.00 -23.01 QP 633.9073 24.35 -6.52 17.83 47.00 -29.17 QP	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dB/m dB Detector cm 53.1313 27.87 -14.46 13.41 40.00 -26.59 QP 130.8369 31.79 -19.09 12.70 40.00 -27.30 QP * 216.0240 36.59 -16.19 20.40 40.00 -19.60 QP 293.0842 37.83 -13.84 23.99 47.00 -23.01 QP 633.9073 24.35 -6.52 17.83 47.00 -29.17 QP	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dB/m dB Detector cm degree 53.1313 27.87 -14.46 13.41 40.00 -26.59 QP 130.8369 31.79 -19.09 12.70 40.00 -27.30 QP * 216.0240 36.59 -16.19 20.40 40.00 -19.60 QP 293.0842 37.83 -13.84 23.99 47.00 -23.01 QP 633.9073 24.35 -6.52 17.83 47.00 -29.17 QP

Radiation Emission Test Data					
Temperature: 24.1℃ Relative Humidity: 69%					
Pressure:	1009hPa	Phase :	Vertical		
Test Voltage :	230V	Test Mode:	ON Mode		

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
*	46.0164	28.25	-14.02	14.23	40.00	-25.77	QP		A Process	
Î	104.5361	25.65	-15.63	10.02	40.00	-29.98	QP			
- 8	200.6880	27.40	-16.28	11.12	40.00	-28.88	QP			
8	250.3012	27.18	-15.10	12.08	47.00	-34.92	QP			
i i	547.0977	23.97	-8.49	15.48	47.00	-31.52	QP			
8	744.8661	23.37	-5.04	18.33	47.00	-28.67	QP			
	*	MHz	Mk. Freq. Level MHz dBuV * 46.0164 28.25 104.5361 25.65 200.6880 27.40 250.3012 27.18 547.0977 23.97	Mk. Freq. Level Factor MHz dBuV dB * 46.0164 28.25 -14.02 104.5361 25.65 -15.63 200.6880 27.40 -16.28 250.3012 27.18 -15.10 547.0977 23.97 -8.49	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 46.0164 28.25 -14.02 14.23 104.5361 25.65 -15.63 10.02 200.6880 27.40 -16.28 11.12 250.3012 27.18 -15.10 12.08 547.0977 23.97 -8.49 15.48	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dB/m * 46.0164 28.25 -14.02 14.23 40.00 104.5361 25.65 -15.63 10.02 40.00 200.6880 27.40 -16.28 11.12 40.00 250.3012 27.18 -15.10 12.08 47.00 547.0977 23.97 -8.49 15.48 47.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB * 46.0164 28.25 -14.02 14.23 40.00 -25.77 104.5361 25.65 -15.63 10.02 40.00 -29.98 200.6880 27.40 -16.28 11.12 40.00 -28.88 250.3012 27.18 -15.10 12.08 47.00 -34.92 547.0977 23.97 -8.49 15.48 47.00 -31.52	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB Detector * 46.0164 28.25 -14.02 14.23 40.00 -25.77 QP 104.5361 25.65 -15.63 10.02 40.00 -29.98 QP 200.6880 27.40 -16.28 11.12 40.00 -28.88 QP 250.3012 27.18 -15.10 12.08 47.00 -34.92 QP 547.0977 23.97 -8.49 15.48 47.00 -31.52 QP	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dB/m dB Detector cm * 46.0164 28.25 -14.02 14.23 40.00 -25.77 QP 104.5361 25.65 -15.63 10.02 40.00 -29.98 QP 200.6880 27.40 -16.28 11.12 40.00 -28.88 QP 250.3012 27.18 -15.10 12.08 47.00 -34.92 QP 547.0977 23.97 -8.49 15.48 47.00 -31.52 QP	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dB/m dB Detector cm degree * 46.0164 28.25 -14.02 14.23 40.00 -25.77 QP 104.5361 25.65 -15.63 10.02 40.00 -29.98 QP 200.6880 27.40 -16.28 11.12 40.00 -28.88 QP 250.3012 27.18 -15.10 12.08 47.00 -34.92 QP 547.0977 23.97 -8.49 15.48 47.00 -31.52 QP


Page 15 of 34

Report No.: VTC-221223015E1

5. HARMONIC CURRENT EMISSION TEST

5.1. Block Diagram of Test Setup

5.2. Test Standard

EN IEC 61000-3-2:2019/A1:2021

5.3. Operating Condition of EUT

- 5.3.1 Setup the EUT as shown in Section 5.1.
- 5.3.2 Turn on the power of all equipments.
- 5.3.3 Let the EUT work in test mode and test it.

5.4. Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

5.5. Test Results

6. VOLTAGE FLUCTUATIONS & FLICKER TEST

6.1. Block Diagram of Test Setup

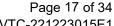
Same as Section 6.1..

6.2. Test Standard

EN 61000-3-3: 2013+A1:2019

6.3. Operating Condition of EUT

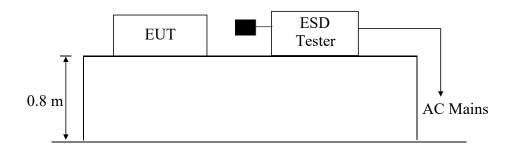
Same as Section 5.3.. The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.


Flicker Test Limit

Test items	Limits
Pst	1.0
dc	3.3%
dmax	4.0%
dt	Not exceed 3.3% for
	500ms

6.4. Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.


6.5. Test Results

7. ELECTROSTATIC DISCHARGE IMMUNITY TEST

7.1. Block Diagram of Test Setup

7.2. Test Standard

EN 55035:2017, EN 61000-4-2:2009

Severity Level: 3 / Air Discharge:±8KV Level: 2 / Contact Discharge:±4KV

7.3. Severity Levels and Performance Criterion

7.3.1 Severity level

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
Х	Special	Special

Page 18 of 34

Report No.: VTC-221223015E1

7.3.2 Performance criterion: B

- A The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

7.4. EUT Configuration

The following equipments are installed on Electrostatic Discharge Immunity test to meet EN 55035:2017, EN 61000-4-2:2009, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 2.4.

7.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 3.5 except the test setup replaced by Section 7.1.2.

7.6. Test Procedure

7.6.1 Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

7.6.2 Contact Discharge:

All the procedure shall be same as Section 7.6.1. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

7.6.3 Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of

the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

7.6.4 Indirect discharge for vertical coupling plane

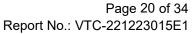
At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are complete illuminated.

7.7. Test Results

PASS

Please refer to the following page.

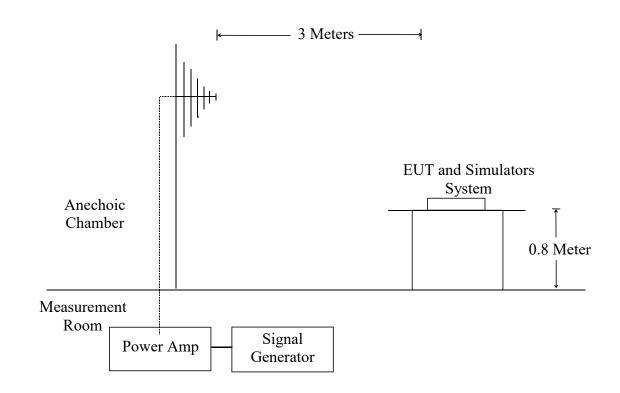
ESD Test Data					
Temperature: 24.5℃ Humidity: 69%					
Power Supply :	230V	Test Mode:			


Air Discharge: ± 8KV

Contact Discharge: ± 4KV

For each point positive 25 times and negative 25 times discharge

· · ·				
Test Points	Air Discharge	Contact Discharge	Performance Criterion	Result
Enclosure	±2,4,8KV	N/A	В	PASS
Slit	N/A	N/A	В	PASS
Metal Part	N/A	±2,4 KV	В	PASS
VCP	N/A	±2,4 KV	В	PASS
HCP	N/A	±2,4 KV	В	PASS


Note: N/A

8. RF FIELD STRENGTH SUSCEPTIBILITY TEST

8.1. Block Diagram of Test Setup

8.2. Test Standard

EN 55035:2017, EN 61000-4-3: 2006+A1:2008+A2:2010 Severity Level 2, 3V / m

8.3. Severity Levels and Performance Criterion

8.3.1. Severity level

Level	Field Strength V/m
1.	1
2.	3
3.	10
X.	Special

8.3.2. Performance criterion: A

- A The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C \ Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

8.4. EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55035:2017, EN 61000-4-4:2012, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 3.4.

8.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.5 except the test setup replaced by Section 8.1.

8.6. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

All the scanning conditions are as follows:

Condition of Test		Remarks	
1.	Fielded Strength	3 V/m (Severity Level 2)	
2.	Radiated Signal	Modulated	
3.	Scanning Frequency	80 – 1000 MHz	
4.	Dwell time of radiated	0.0015 decade/s	
5.	Waiting Time	1 Sec.	

8.7. Test Results

PASS

Please refer to the following page.

		R/S Test	Data		
Temperature : 24.1℃		Humidity: 69%			
Field Strength: 3 V/m			Criterion: A		
Power Supply: 230V			Frequency Range: 80 MHz to 1000 MHz		
Modulation:	☑ AM	☐ Pulse	□none	1 KHz	80%
Test Mode : On					
	Frequency Range : 80-1000MHz				
Steps	s 1 %				
		Horizontal	Vertical		Result
Front		Α	A		Pass
Right		Α	А		Pass
Rear		Α	A		Pass
Left	_eft A		A		Pass
Note: N/A	•		1		

9. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

9.1. Block Diagram of EUT Test Setup

9.2. Test Standard

EN 55035:2017, EN 61000-4-4:2012

9.3. Severity Levels and Performance Criterion

Severity Level 2 at 1KV, Pulse Rise time & Duration: 5 nS / 50 nS Severity Level:

Octobry Level.				
Open Circuit Output Test Voltage ±10%				
Level	On power ports	On I/O(Input/Output)		
		Signal data and control ports		
1.	0.5KV	0.25KV		
2.	1KV	0.5KV		
3.	2KV	1KV		
4.	4KV	2KV Special		
X.	Special			

Performance criterion: B

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

9.4. EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55035:2017, EN 61000-4-4:2012, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 3.4.

9.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.6 except the test setup replaced by Section 9.1.

9.6. Test Procedure

EUT shall be placed 0.8m high above the ground reference plane which is a min.1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m

9.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

9.7. Test Results

Page 25 of 34

Report No.: VTC-221223015E1

10. SURGE TEST

10.1. Block Diagram of EUT Test Setup

10.2. Test Standard

EN 55035:2017, EN61000-4-5:2014

10.3. Severity Levels and Performance Criterion

Severity Level: Line to Line, Level 2 at 1KV; Severity Level: Line to Earth, Level 3 at 2KV.

Severity Level	Open-Circuit Test Voltage (KV)
1.	0.5
2.	1.0
3.	2.0
4.	4.0
X.	Special

Performance criterion: B

- A The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

10.4. EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55035:2017, EN61000-4-5:2014, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 3.4.

10.5. Operating Condition of EUT

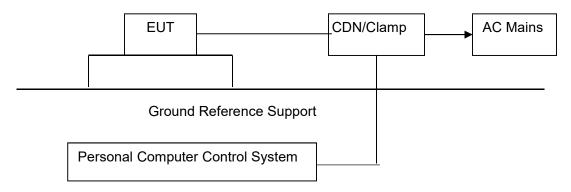
Same as conducted emission measurement, which is listed in Section 2.7 except the test setup replaced by Section 10.1.

10.6. Test Procedure

- 1) Set up the EUT and test generator as shown on section 10.1
- 2) For line to line coupling mode, provide a 1KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 3) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 4) Different phase angles are done individually.
- 5) Repeat procedure 2) to 4) except the open-circuit test voltage change from 1KV to 2KV for line to earth coupling mode test.
- 6) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

10.7. Test Result

Page 27 of 34 Report No.: VTC-221223015E1


11. INJECTED CURRENTS SUSCEPTIBILITY TEST

11.1. Block Diagram of EUT Test Setup

11.1.1. Block Diagram of EUT Test Setup

11.1.2. Block Diagram of Test Setup

11.2. Test Standard

EN 55035:2017, EN61000-4-6:2014

11.3. Severity Levels and Performance Criterion

Severity Level 2: 3V(rms), 150KHz $\sim \,$ 80MHz

Severity Level:

Level	Field Strength V	
1.	1	
2.	3	
3.	10	
X.	Special	

Performance criterion: A

- A The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

11.4. EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.8.

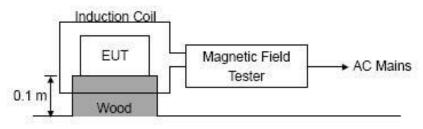
11.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.8 except the test set up replaced as Section 11.1.

11.6. Test Procedure

- 1) Set up the EUT, CDN and test generator as shown on section 11.1
- 2) Let EUT work in test mode and measure.
- 3) The EUT and supporting equipments are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane at above 0.1-0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 4) The disturbance signal described below is injected to EUT through CDN.
- 5) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 6) The frequency range is swept from 150KHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave
- 7) The rate of sweep shall not exceed 1.5×10⁻³ decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 8) Recording the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

11.7. Test Result


Page 29 of 34

Report No.: VTC-221223015E1

12. AGNETIC FIELD IMMUNITY TEST

12.1. Block Diagram of Test Setup

Ground Reference Support

12.2. Test Standard

EN 55035:2017, EN61000-4-8:2010 Severity Level 1 at 1A/m

12.3. Severity Levels and Performance Criterion

12.3.1 Severity level

Level	Magnetic Field Strength A/m		
1.	1		
2.	3		
3.	10		
4.	30		
5.	100		
X.	Special		

12.3.2 Performance criterion: B

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

Page 30 of 34 Report No.:VTC-221223015E1

12.4. EUT Configuration on Test

The configuration of EUT is listed in Section 2.9.

12.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.9 except the test set up replaced as Section 12.1.

12.6. Test Procedure

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions (1m*1m) and shown in Section 10.1. The induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

12.7. Test Results

Page 31 of 34 Report No.:VTC-221223015E1

13. VOLTAGE DIPS AND INTERRUPTIONS TEST

13.1. Block Diagram of EUT Test Setup

13.2. Test Standard

EN 55035:2017, EN61000-4-11:2004

13.3. Severity Levels and Performance Criterion

Severity Level:

Input and Output AC Power Ports.

✓ Voltage Dips.

☑ Voltage Interruptions.

Environmental	Test Specification	Units	Performance	
Phenomena			Criterion	
	>95	% Reduction	В	
Voltage Dine	0.5	period		
Voltage Dips	30	% Reduction	0	
	25	period	С	
Voltage	>95	% Reduction	0	
Interruptions	250	period	С	

Performance criterion: B, C, C

- A The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

Page 32 of 34 Report No.:VTC-221223015E1

13.4. EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.10.

13.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.10 except the test set up replaced as Section 13.1.

13.6. Test Procedure

- 1) Set up the EUT and test generator as shown on section 13.1
- 2) The interruption is introduced at selected phase angles with specified duration. There is a 3mins minimum interval between each test event.
- 3) After each test a full functional check is performed before the next test.
- 4) Repeat procedures 2 & 3 for voltage dips, only the level and duration is changed.
- 5) Record any degradation of performance.

13.7. Test Result

14. EUT PHOTOGRAPHS

EUT Photo 1

EUT Photo 2

EUT Photo 3

EUT Photo 4

*** END OF REPORT ***