

# Shenzhen Toby Technology Co., Ltd.

Report No.: TB-EMC172573

Page: 1 of 72

# **EMC Test Report**

Certificate No. TB200425403

XonTel Technology Trd. Co. W.L.L **Applicant** 

**Equipment Under Test (EUT)** 

**EUT Name** POE Switch

Model No. XT-2400G

XT-8000P Series Model No.

**Brand Name** XonTel

**Receipt Date** 2020-04-17

**Test Date** 2020-04-18 to 2020-05-07

**Issue Date** 2020-05-08

**Standards** EN 55032:2015

> EN 61000-3-2:2014 EN 61000-3-3:2013 EN 55035:2017

Conclusions **PASS** 

In the configuration tested, the EUT complied with the standards specified above. The EUT

technically complies with the 2014/30/EU directive requirements.

**Test/Witness Engineer** 

**Engineer Supervisor** 

**Engineer Manager** 

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-075-1.0



# TABLE OF CONTENTS

| GENERAL INFORMATION                      | •••••••••••••••••••••••••••••••••••••••                |
|------------------------------------------|--------------------------------------------------------|
| 1.1. Client Information                  | 6                                                      |
|                                          |                                                        |
|                                          |                                                        |
|                                          |                                                        |
|                                          |                                                        |
| 1.6. General Performance Criterion       |                                                        |
| 1.7. Measurement Uncertainty             | 9                                                      |
|                                          |                                                        |
| TEST RESULTS SUMMARY                     |                                                        |
| TEST EQUIPMENT USED                      | 12                                                     |
|                                          |                                                        |
|                                          |                                                        |
|                                          |                                                        |
|                                          |                                                        |
|                                          |                                                        |
|                                          |                                                        |
|                                          |                                                        |
|                                          |                                                        |
|                                          |                                                        |
|                                          |                                                        |
| 5.4 Deviation From Test Standard         | 20                                                     |
| 5.5 Test Data                            | 20                                                     |
| CONDUCTED DIFFERENTIAL VOLTAGE EMISSIONS | 21                                                     |
| 6.1 Test Standard and Limit              | 21                                                     |
| 6.2 Test setup                           | 21                                                     |
| 6.3 Test Setup and Test Procedure        |                                                        |
| 6.4 Test Data                            | 22                                                     |
| RADIATED EMISSION TEST                   | 24                                                     |
| 7.1 Test Standard and Limit              | 24                                                     |
| 7.2 Test Setup                           | 24                                                     |
| 7.3 Test Procedure                       | 26                                                     |
| 7.4 Deviation From Test Standard         | 26                                                     |
| 7.5 Test Data                            | 26                                                     |
| HARMONIC CURRENT EMISSION TEST           | 27                                                     |
| 8.1 Test Standard and Limit              | 27                                                     |
| 8.2 Test Setup                           | 27                                                     |
| 8.3 Test Procedure                       | 28                                                     |
| 8.4 Deviation From Test Standard         | 28                                                     |
| 8.5 Test Data                            | 28                                                     |
| VOLTAGE FLUCTUATION AND FLICKER TEST     | 29                                                     |
| 9.1 Test Standard and Limit              | 29                                                     |
| 9.2 Test Setup                           | 29                                                     |
| 9.3 Test Procedure                       | 30                                                     |
|                                          | 1.2. General Description of EUT (Equipment Under Test) |



|      | 9.4   | Deviation From Test Standard                   | 30 |
|------|-------|------------------------------------------------|----|
|      | 9.5   | Test Data                                      | 30 |
| 10   | ELEC  | CTROSTATIC DISCHARGE IMMUNITY TEST             | 31 |
|      | 10.1  | Test Requirements                              | 31 |
|      | 10.2  | Test Setup                                     |    |
|      | 10.3  | Test Procedure                                 |    |
|      | 10.4  | Deviation From Test Standard                   | 32 |
|      | 10.5  | Test Data                                      | 32 |
| 11   | RAD   | ATED ELECTROMAGNETIC FIELD IMMUNITY TEST       | 33 |
|      | 11.1  | Test Requirements                              |    |
|      | 11.2  | Test Setup                                     |    |
|      | 11.3  | Test Procedure                                 |    |
|      | 11.4  | Deviation From Test Standard                   |    |
|      | 11.5  | Test Data                                      |    |
| 12   | ELEC  | CTRICAL FAST TRANSIENT/BURST TEST              | 35 |
|      | 12.1  | Test Requirements                              |    |
|      | 12.2  | Test Setup                                     |    |
|      | 12.3  | Test Procedure                                 |    |
|      | 12.4  | Deviation From Test Standard                   |    |
|      | 12.5  | Test Data                                      |    |
| 13   | SUR   | GE IMMUNITY TEST                               |    |
|      | 13.1  | Test Requirements                              |    |
|      | 13.2  | Test Setup                                     |    |
|      | 13.3  | Test Procedure                                 |    |
|      | 13.4  | Deviation From Test Standard                   |    |
|      | 13.5  | Test Data                                      |    |
| 14   | CON   | DUCTED IMMUNITY TEST                           |    |
| 100  | 14.1  | Test Requirements                              |    |
|      | 14.2  | Test Setup                                     |    |
|      | 14.3  | Test Procedure                                 |    |
|      | 14.4  | Deviation From Test Standard                   |    |
|      | 14.5  | Test Data                                      |    |
| 15   | VOLT  | TAGE DIPS AND INTERRUPTIONS IMMUNITY TEST      |    |
| 1111 | 15.1  | Test Requirements                              |    |
|      | 15.2  | Test Setup                                     |    |
|      |       | Test Procedure                                 |    |
|      | 15.4  |                                                |    |
|      | _     | Test Data                                      |    |
| 16   |       | TOGRAPHS - CONSTRUCTIONAL DETAILS              |    |
| 17   |       | TOGRAPHS - TEST SETUP                          |    |
|      |       |                                                |    |
|      |       | ENT ACONDUCTED EMISSION DATA (AC MAINS)        |    |
| ATT  | ACHME | ENT BCONDUCTED EMISSION DATA (ASYMMETRIC MODE) | 55 |
| ATT  | ACHME | ENT CRADIATED EMISSION TEST DATA               | 58 |
| ATT  | ACHME | ENT DHARMONIC CURRENT EMISSION TEST DATA       | 62 |
|      |       | ENT EVOLTAGE FLUCTUATION AND FLICKER TEST DATA |    |
|      |       | ENT FELECTROSTATIC DISCHARGE TEST DATA         |    |
| /    |       |                                                |    |



Report No.: TB-EMC172573
Page: 4 of 72

| ATTACHMENT GRF FIELD STRENGTH SUSCEPTIBILITY TEST DATA | 6 |
|--------------------------------------------------------|---|
| ATTACHMENT HELECTRICAL FAST TRANSIENT/BURST TEST DATA  | 6 |
| ATTACHMENT ISURGE IMMUNITY TEST DATA                   | 7 |
| ATTACHMENT JCONDUCTED IMMUNITY TEST DATA               | 7 |
| ATTACHMENT KVOLTAGE DIPS AND INTERRUPTIONS TEST DATA   | 7 |



5 of 72 Page:

# **Revision History**

| Report No.   | Version | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Issued Date |
|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| TB-EMC172573 | Rev.01  | Initial issue of report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2020-05-08  |
|              | 4083    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W BR        |
| 6003         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00        |
| 01           | 4081    | a filling the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm33        |
|              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WUBT.       |
| 3            | 000     | The state of the s |             |
|              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mnB1        |
|              | 33      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|              | 401,0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.033       |
| 403          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| TO S         | 4000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mn BB       |
|              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WW.         |



Report No.: TB-EMC172573
Page: 6 of 72

1. General Information

# 1.1. Client Information

| Applicant    | 3                                               | XonTel Technology Trd. Co. W.L.L                       |  |
|--------------|-------------------------------------------------|--------------------------------------------------------|--|
| Address      | id                                              | Aladel Tower, F21, Fahad Al Salem St., State of KUWAIT |  |
| Manufacturer | Manufacturer : XonTel Technology Trd. Co. W.L.L |                                                        |  |
| Address      | :                                               | Aladel Tower, F21, Fahad Al Salem St., State of KUWAIT |  |

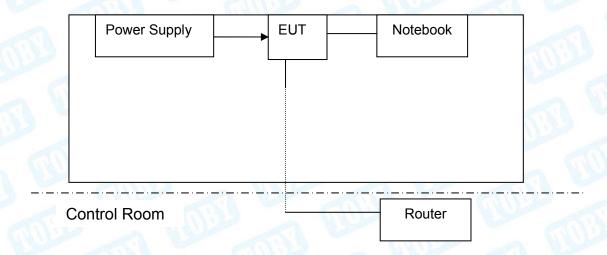
# 1.2. General Description of EUT (Equipment Under Test)

| <b>EUT Name</b>                          | 3          | POE Switch                                                                                                        |  |  |
|------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| Model(s)                                 | 1          | XT-2400G, XT-8000P                                                                                                |  |  |
| Model<br>Difference                      | A          | All above models are identical in schematic, structure and critical components except for different model number. |  |  |
| Brand Name                               |            | XonTel                                                                                                            |  |  |
| Class of EUT                             | : (        | ☑ Class A ☐ Class B                                                                                               |  |  |
| EUT Type                                 | <b>5</b> : | ☑ Table top ☐ Floor standing ☐ combination                                                                        |  |  |
| F <sub>X</sub>                           | -          | 00MHz-1000MHz                                                                                                     |  |  |
| Power Supply                             |            | Input: 100-240Vac, 50/60Hz                                                                                        |  |  |
| <b>F</b> <sub>X</sub> : Highest interest | nal fi     | requency.                                                                                                         |  |  |





### 1.3. Description of Operating Mode


To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description              |
|--------------|--------------------------|
| Mode 1       | Full system Working Mode |

The EUT system operated these modes were found to be the worst case during the pre-scanning test as Following:

| #111112                     |                          |  |  |
|-----------------------------|--------------------------|--|--|
|                             | For EMI Test             |  |  |
| Final Test Mode Description |                          |  |  |
| Mode 1                      | Full system Working Mode |  |  |
|                             | For EMS Test             |  |  |
| Final Test Mode             | Description              |  |  |
| Mode 1                      | Full system Working Mode |  |  |
|                             | For ISN Test             |  |  |
| Final Test Mode             | Description              |  |  |
| Mode 2                      | LAN Port 10Mbps          |  |  |
| Mode 3                      | LAN Port 100Mbps         |  |  |
| Mode 4                      | LAN Port 1000Mbps        |  |  |
|                             |                          |  |  |

# 1.4. Block Diagram Showing The Configuration of System Tested





Page: 8 of 72

### 1.5. Description of Support Units

| Equipment Information                                    |       |     |              |          |  |  |
|----------------------------------------------------------|-------|-----|--------------|----------|--|--|
| Name                                                     | Model | S/N | Manufacturer | Used "√" |  |  |
| Notebook                                                 | T430  |     | Thinkpad     | V        |  |  |
| Notebook                                                 | T450s |     | Thinkpad     | V        |  |  |
| Router TL-WR886N 1183653048162 TP-LINK √                 |       |     |              |          |  |  |
| Note: The notebook and Router provided by the laboratory |       |     |              |          |  |  |

#### 1.6. General Performance Criterion

#### General

General performance criteria are defined in 8.2, 8.3 and 8.4. These criteria shall be used during the testing of primary functions where no relevant annex is applicable.

When assessing the impact of a disturbance on a function, the assessment should take into consideration the function's performance prior to the application of the disturbance and only identify as failures those changes in performance that are a result of the disturbance.

#### Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

#### Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

#### Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.



Page: 9 of 72

### 1.7. Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a

level of confidence of approximately 95 %.

| Test                                 | Parameters                                        | Expanded<br>Uncertainty (U <sub>Lab</sub> )   | Expanded<br>Uncertainty<br>(U <sub>Cispr</sub> ) |
|--------------------------------------|---------------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| Conducted<br>Emission                | Level Accuracy:<br>9kHz~150kHz<br>150kHz to 30MHz | $\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$ | $\pm$ 4.0 dB $\pm$ 3.6 dB                        |
| Radiated Emission                    | Level Accuracy:<br>9kHz to 30 MHz                 | ±4.60 dB                                      | N/A                                              |
| Radiated Emission                    | Level Accuracy:<br>30MHz to 1000<br>MHz           | ±4.50 dB                                      | $\pm$ 5.2 dB                                     |
| Radiated Emission                    | Level Accuracy:<br>Above 1000MHz                  | ±4.20 dB                                      | N/A                                              |
| Mains Harmonic                       | Voltage                                           | ±3.11%                                        | N/A                                              |
| Voltage<br>Fluctuations &<br>Flicker | Voltage                                           | ±3.25%                                        | N/A                                              |

## 1.8. Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

#### **CNAS (L5813)**

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351.

### IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.



Report No.: TB-EMC172573 Page: 10 of 72

2. TEST Results Summary

| EMISSION<br>( ⊠EN 55032:2015 )            |                    |                    |                     |  |
|-------------------------------------------|--------------------|--------------------|---------------------|--|
| Description of test items                 | Standards          | Class              | Results             |  |
| Conducted disturbance at mains terminals  | EN 55032: 2015     | ☐ Class B          | Pass <sub>(1)</sub> |  |
| Conducted disturbance for asymmetric mode | EN 55032: 2015     | ☐ Class B          | Pass <sub>(2)</sub> |  |
| Conducted differential voltage emission   | EN 55032: 2015     | Class B            | N/A <sub>(2)</sub>  |  |
| Radiated Disturbance                      | EN 55032: 2015     | <ul><li></li></ul> | Pass                |  |
| Harmonic current emissions                | EN 61000-3-2: 2014 | ☐ Class D          | Pass <sub>(4)</sub> |  |
| Voltage fluctuation and flicker           | EN 61000-3-3: 2013 |                    | Pass                |  |

- (1) Class A/Class B: Applicable to AC mains power ports
- (2) Class A: Applicable to wired network ports, optical fibre ports with metallic shield or tension members and antenna ports.
  - Class B: Applicable to wired network ports, optical fibre ports with metallic shield or tension members, broadcast receiver tuner ports and antenna ports.
  - Applicable to ports listed above and intended to connect to cables longer than 3 m.
- (3) Class B: Applicable to TV broadcast receiver tuner ports with an accessible connector, RF modulator output ports and FM broadcast receiver tuner ports with an accessible connector.
- (4) Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
  - Class D: Equipment having a specified power less than or equal to 600W of the following types: Personal computers and personal computer monitors and television receivers.



Report No.: TB-EMC172573
Page: 11 of 72

| IMMUNITY<br>( ⊠EN 55035:2017)                                                                   |                                         |                    |  |  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|--|--|
| Description of test items                                                                       | Standards                               | Results            |  |  |
| Electrostatic Discharge (ESD)                                                                   | EN 61000-4-2: 2009                      | Pass               |  |  |
| Continuous RF Electromagnetic Field Disturbances                                                | EN 61000-4-3: 2006+A2:2008+<br>A2: 2010 | Pass               |  |  |
| EFT/B Immunity                                                                                  | EN 61000-4-4: 2012                      | Pass               |  |  |
| Surge Immunity                                                                                  | EN 61000-4-5: 2014                      | Pass               |  |  |
| Continuous RF Disturbances                                                                      | EN 61000-4-6: 2014                      | Pass               |  |  |
| Power frequency magnetic field                                                                  | EN 61000-4-8: 2010                      | N/A <sub>(1)</sub> |  |  |
| Voltage dips, >95% reduction                                                                    |                                         | 33                 |  |  |
| Voltage dips, 30% reduction                                                                     | EN 61000-4-11: 2004                     | Pass               |  |  |
| Voltage interruptions                                                                           | 000                                     | 1 800              |  |  |
| Broadband impulse noise disturbances, repetitive Broadband impulse noise disturbances, isolated | EN 61000-4-6: 2014                      | N/A <sub>(2)</sub> |  |  |

Note: N/A is an abbreviation for Not Applicable.

(2) Not applicable, Applicable only to CPE xDSL ports.

<sup>(1)</sup> Not applicable, Applicable only to equipment containing devices intrinsically susceptible to magnetic fields, the EUT is not containing devices susceptible to magnetic fields.



Report No.: TB-EMC172573
Page: 12 of 72

3. Test Equipment Used

| Conducted Er                    | nission Test                      | T                  | T .               | T             | Cal. Due         |
|---------------------------------|-----------------------------------|--------------------|-------------------|---------------|------------------|
| Equipment                       | Manufacturer                      | Model No.          | Serial No.        | Last Cal.     | Date             |
| EMI Test Receiver               | Rohde & Schwarz                   | ESCI               | 100321            | Jul. 13, 2019 | Jul. 12, 2020    |
| RF Switching Unit               | Compliance Direction Systems Inc. | RSU-A4             | 34403             | Jul. 13, 2019 | Jul. 12, 2020    |
| AMN                             | SCHWARZBECK                       | NNBL<br>8226-2     | 8226-2/164        | Jul. 13, 2019 | Jul. 12, 2020    |
| LISN                            | Rohde & Schwarz                   | ENV216             | 101131            | Jul. 13, 2019 | Jul. 12, 2020    |
| ISN                             | SCHWARZBECK                       | NTFM 8131          | 8131-193          | Jul. 13, 2019 | Jul. 12, 2020    |
| ISN                             | SCHWARZBECK                       | CAT3 8158          | cat3<br>5158-0094 | Jul. 13, 2019 | Jul. 12, 2020    |
| ISN                             | SCHWARZBECK                       | NTFM5158           | NTFM5158<br>0145  | Jul. 13, 2019 | Jul. 12, 2020    |
| ISN                             | SCHWARZBECK                       | CAT 8158           | cat5 8158-179     | Jul. 13, 2019 | Jul. 12, 2020    |
| Radiation Em                    | ission Test                       | •                  |                   |               | •                |
| Equipment                       | Manufacturer                      | Model No.          | Serial No.        | Last Cal.     | Cal. Due<br>Date |
| Spectrum<br>Analyzer            | Agilent                           | E4407B             | MY45106456        | Jul. 13, 2019 | Jul. 12, 2020    |
| EMI Test<br>Receiver            | Rohde & Schwarz                   | ESCI               | 101165            | Jul. 13, 2019 | Jul. 12, 2020    |
| Bilog Antenna                   | ETS-LINDGREN                      | 3142E              | 00117537          | Mar. 01, 2020 | Feb.28, 2021     |
| Horn Antenna                    | ETS-LINDGREN                      | 3117               | 00143207          | Mar. 01, 2020 | Feb.28, 2021     |
| Pre-amplifier                   | HP                                | 11909A             | 185903            | Mar. 01, 2020 | Feb.28, 2021     |
| Pre-amplifier                   | HP                                | 8449B              | 3008A00849        | Mar. 01, 2020 | Feb.28, 2021     |
| Cable                           | HUBER+SUHNER                      | 100                | SUCOFLEX          | Mar. 01, 2020 | Feb.28, 202      |
| Signal Generator                | Rohde & Schwarz                   | SML03              | IKW682-054        | Mar. 01, 2020 | Feb.28, 2021     |
| Positioning<br>Controller       | ETS-LINDGREN                      | 2090               | N/A               | N/A           | N/A              |
| Harmonic Cur                    | rent and Voltag                   | e Fluctuatio       | n and Flicke      | r Test        |                  |
| Equipment                       | Manufacturer                      | Model No.          | Serial No.        | Last Cal.     | Cal. Due<br>Date |
| Harmonic Flicker<br>Test System | CI                                | 5001ix-CTS-<br>400 | 100321            | Jul. 12, 2019 | Jul. 11, 2020    |
| 5K VA                           | CI                                | 500liX             | 59468             | Jul. 12, 2019 | Jul. 11, 2020    |
| Discharge Imi                   | munity Test                       |                    |                   |               |                  |
| Equipment                       | Manufacturer                      | Model No.          | Serial No.        | Last Cal.     | Cal. Due<br>Date |
| ESD Tester                      | TESEQ                             | NSG437             | 304               | Jul. 13, 2019 | Jul. 12, 2020    |



TOBY

| <b>Radiated Imm</b>   | unity Test       |                |              |               |                  |
|-----------------------|------------------|----------------|--------------|---------------|------------------|
| Equipment             | Manufacturer     | Model No.      | Serial No.   | Last Cal.     | Cal. Due<br>Date |
| Signal Generator      | Rohde & Schwarz  | SMT03          | 200754       | Mar. 01, 2020 | Feb.28, 2021     |
| Power Meter           | Rohde & Schwarz  | NRVD           | 110562       | Jan. 10, 2020 | Jan. 09, 202     |
| Voltage Probe         | Rohde & Schwarz  | URV5-Z2        | 12056        | Jan. 10, 2020 | Jan. 09, 202     |
| Voltage Probe         | Rohde & Schwarz  | URV5-Z2        | 12074        | Jan. 10, 2020 | Jan. 09, 202     |
| RF Amplifier          | AR               | 50S1G4A        | 326720       | Jan. 10, 2020 | Jan. 09, 202     |
| Bilog Antenna         | ETS              | 3142C          | 00047662     | Jan. 10, 2020 | Jan. 09, 202     |
| Horn Antenna          | ARA              | DRG-118A       | 16554        | Jan. 10, 2020 | Jan. 09, 202     |
| Electrical Fas        | t Transient/ Sur | ge/ Voltage    | Dip and Inte | rruption Test |                  |
| Equipment             | Manufacturer     | Model No.      | Serial No.   | Last Cal.     | Cal. Due<br>Date |
| Simulator             | EMTEST           | UCS500N5       | V0948105575  | Jul. 13, 2019 | Jul. 12, 2020    |
| Auto-transformer      | EMTEST           | V4780S2        | 0109-41      | Jul. 13, 2019 | Jul. 12, 2020    |
| Coupling Clamp        | EMTEST           | HFK            | 1109-04      | Jul. 13, 2019 | Jul. 12, 2020    |
| Conducted Im          | munity Test      |                |              |               |                  |
| Equipment             | Manufacturer     | Model No.      | Serial No.   | Last Cal.     | Cal. Due<br>Date |
| RF Generator          | FRANKONIA        | CIT-10/75      | 126B1126     | Jul. 13, 2019 | Jul. 12, 2020    |
| Attenuator            | FRANKONIA        | 59-6-33        | A413         | Jul. 13, 2019 | Jul. 12, 2020    |
| M-CDN                 | LUTHI            | L-801<br>M2/M3 | 2599         | Jul. 13, 2019 | Jul. 12, 2020    |
| AF2-CDN               | LUTHI            | L-801:AF2      | 2538         | Mar. 01, 2020 | Feb.28, 2021     |
| EM Injection<br>Clamp | LUTHI            | EM101          | 35958        | Jul. 13, 2019 | Jul. 12, 2020    |

Report No.: TB-EMC172573
Page: 14 of 72

# 4. Conducted Emission Test

### 4.1. Test Standard and Limit

### 4.1.1. Test Standard

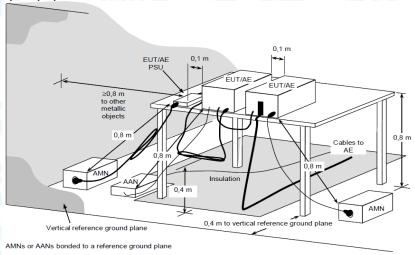
EN 55032: 2015

#### 4.1.2. Test Limit

### Conducted Disturbance Test Limit (Class A)

| Frequency | Maximum RF Line  | Maximum RF Line Voltage (dBμV) |  |  |  |
|-----------|------------------|--------------------------------|--|--|--|
| (MHz)     | Quasi-peak Level | Average Level                  |  |  |  |
| 0.15~0.50 | 79               | 66                             |  |  |  |
| 0.50~30   | 73               | 60                             |  |  |  |

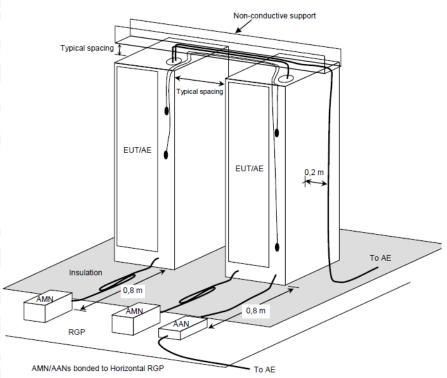
### Conducted Disturbance Test Limit (Class B)


| Frequency | Maximum RF Line Voltage (dBμV) |               |  |  |
|-----------|--------------------------------|---------------|--|--|
| (MHz)     | Quasi-peak Level               | Average Level |  |  |
| 0.15~0.5  | 66 ~ 56 *                      | 56 ~ 46 *     |  |  |
| 0.50~5    | 56                             | 46            |  |  |
| 5~30      | 60                             | 50            |  |  |

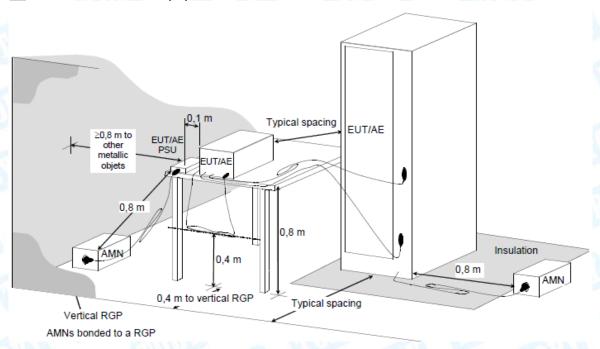
NOTE 1 The lower limit shall apply at the transition frequencies.

NOTE 2 The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

### 4.2. Test Setup


### 








For floor standing equipment



### For combination equipment





Report No.: TB-EMC172573
Page: 16 of 72

4.3. Test Procedure

Detailed test procedure was following clause 7 of CISPR 16-2-1.

All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

#### 4.4. Deviation From Test Standard

No deviation

#### 4.5. Test Data

Please refer to the Attachment A.



# 5 Conducted Emissions for Asymmetric Mode

#### 5.1 Test Standard and Limit

5.1.1. Test Standard

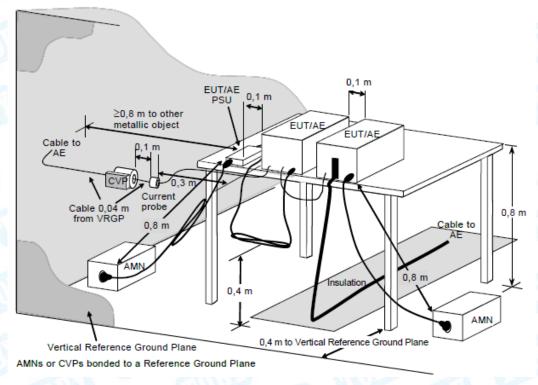
EN 55032: 2015

5.1.2. Limits

Limits for class A equipment

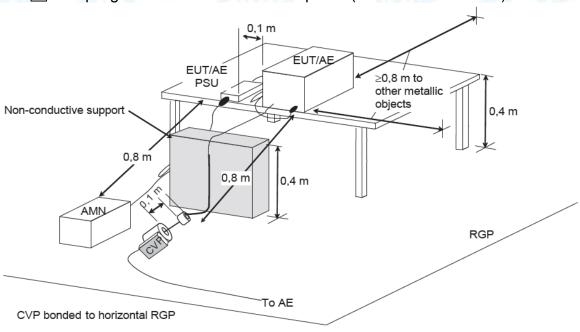
| Frequency range | Voltage Limits dB(μV) |         | Current limits dB(μA) |         |
|-----------------|-----------------------|---------|-----------------------|---------|
| (MHz)           | Quasi-peak            | Average | Quasi-peak            | Average |
| 0.15 ~ 0.5      | 97 ~ 87               | 84 ~ 74 | 53 ~ 43               | 40 ~ 30 |
| 0.5 ~ 30        | 87                    | 74      | 43                    | 30      |

**Note:** if "150 $\Omega$  to 50 $\Omega$  adaptor" applied, correction factor of 9.5dB should be added to the test data.

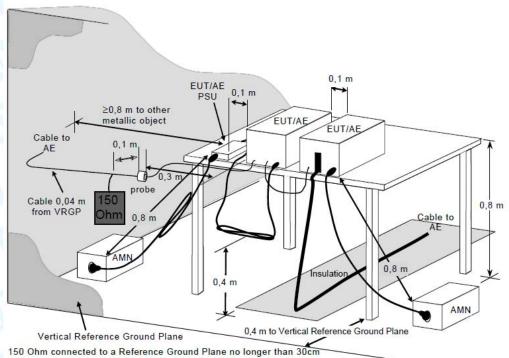

Limits for class B equipment

| Frequency range | Voltage Limi | ts dB(μV) | Current limits | s dB(μA) |
|-----------------|--------------|-----------|----------------|----------|
| (MHz)           | Quasi-peak   | Average   | Quasi-peak     | Average  |
| 0.15 ~ 0.5      | 84 ~ 74      | 74 ~ 64   | 40 ~ 30        | 30 ~ 20  |
| 0.5 ~ 30        | 74           | 64        | 30             | 20       |

**Note:** if " $150\Omega$  to  $50\Omega$  adaptor" applied, correction factor of 9.5dB should be added to the test data.


### 5.2 Test setup

Coupling device: CVP and Current probe (alternative method 1)

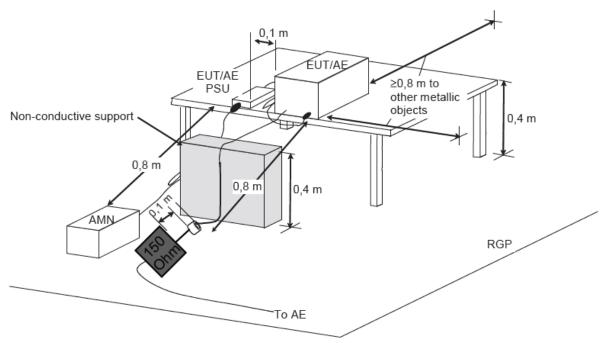





Coupling device: CVP and Current probe (alternative method 2)

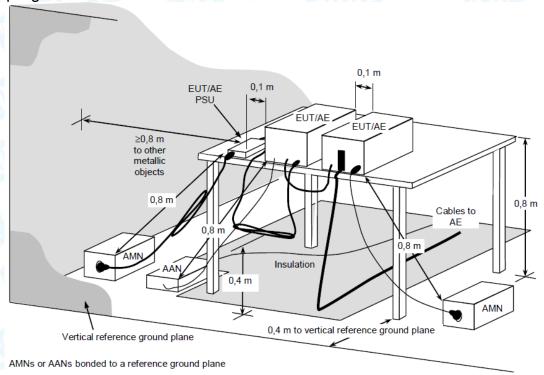


Coupling device: Current probe / " $150\Omega$  to  $50\Omega$  adaptor" / high impedance probe (alternative method 1)




Probe may be Current probe / "150 Ohm to 50 Ohm adaptor" / high impedance probe






 $\Box$  Coupling device: Current probe / "150Ω to 50Ω adaptor" / high impedance probe (alternative method 2)



150 Ohm connected to a Reference Ground Plane no longer than 30cm
Probe may be Current probe / "150 Ohm to 50 Ohm adaptor" / high impedance probe

### ☐ Coupling device: AAN





Report No.: TB-EMC172573
Page: 20 of 72

5.3 Test Setup and Test Procedure

Detailed test procedure was following clause C.4.1 of EN 55032.

Frequency range 150kHz – 30MHz was checked and EMI receiver measurement bandwidth was set to 9 kHz.

| Data Port           | Measurement type    | Coupling device                                              | No. of Pairs        |
|---------------------|---------------------|--------------------------------------------------------------|---------------------|
| Balanced Unscreened | Voltage             | AAN                                                          | ≤ 4                 |
| Balanced Unscreened | Voltage and Current | CVP & Current probe                                          | >4 or unable to AAN |
| Screened or Coaxial | Voltage             | AAN                                                          | N/A                 |
| Screened or Coaxial | Voltage or Current  | Current probe / "150Ω to 50Ω adaptor" / high impedance probe | N/A                 |
| Unbalanced cables   | Voltage and Current | CVP & Current probe                                          | N/A                 |

### 5.4 Deviation From Test Standard

No deviation

#### 5.5 Test Data

Please refer to the Attachment B.



Page: 21 of 72

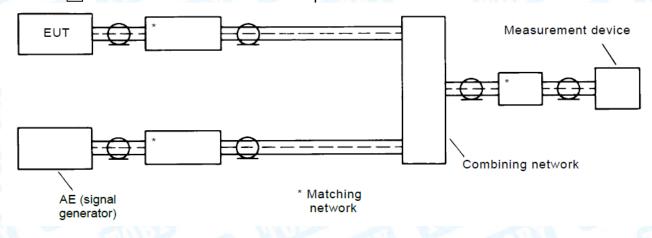
# 6 Conducted Differential Voltage Emissions

6.1 Test Standard and Limit

6.1.1. Test Standard

EN 55032: 2015

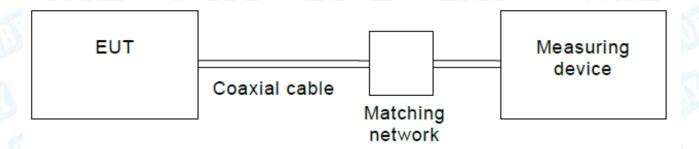
6.1.2. Limits


Requirements for Conducted differential voltage emissions from Class B

equipment

|                                                                                      | F                     | Differential voltage limit @ 75Ω<br>(dBuV) |                                    |                                  |  |
|--------------------------------------------------------------------------------------|-----------------------|--------------------------------------------|------------------------------------|----------------------------------|--|
| Applicability                                                                        | Frequency range (MHz) | Other                                      | Local<br>Oscillator<br>Fundamental | Local<br>Oscillator<br>Harmonics |  |
| Television receivers; Digital Video Recorders; PC TV broadcast receiver tuner cards; | 30 ~ 950              | 46                                         | 46                                 | 46                               |  |
| Digital audio receivers;                                                             | 950 ~ 2 150           | 46                                         | 54                                 | 54                               |  |
| Tuner units (not the LNB) for satellite signal reception                             | 950 ~ 2 150           | 46                                         | 54                                 | 54                               |  |
|                                                                                      | 30 ~ 300              | 46                                         | 54                                 | 50                               |  |
| FM audio receivers and PC tuner cards                                                | 300 ~ 1 000           | 46                                         | 54                                 | 52                               |  |
| CM cos radios                                                                        | 30 ~ 300              | 46                                         | 66                                 | 59                               |  |
| FM car radios                                                                        | 300 ~ 1 000           | 46                                         | 66                                 | 52                               |  |
| RF modulator output ports connect to TV                                              | 30 ~ 950              | 46                                         | 76                                 | 46                               |  |
| broadcast receiver tuner ports                                                       | 950 ~ 2150            | 46                                         | 1                                  | 54                               |  |

### 6.2 Test setup


☐TV/FM broadcast receiver tuner ports



RF modulator output port



Report No.: TB-EMC172573
Page: 22 of 72



### 6.3 Test Setup and Test Procedure

Detailed test procedure was following clause C4.2 and C4.3 of EN55032. Frequency range 30MHz – 2150MHz was checked and EMI receiver measurement bandwidth was set to 120kHz /1MHz.

### 6.4 Test Data

This test is not applicable.



Report No.: TB-EMC172573
Page: 23 of 72

| ☐ TV | tuner | ports |
|------|-------|-------|
|------|-------|-------|

After the preliminary scan, we found the following test mode (ATV 55.25 MHz) producing the highest emission level.

| Frequency<br>MHz | Emission Level dBμV | Limits<br>dBμV/75Ω | Margin<br>dB | Remark |
|------------------|---------------------|--------------------|--------------|--------|
| The City         |                     | 10117              |              |        |
|                  | - COUNTY            | and and            |              |        |
| Remark: All rea  | adings are Quasi-P  | eak values.        | THE PARTY OF |        |

Report No.: TB-EMC172573
Page: 24 of 72

# 7 Radiated Emission Test

### 7.1 Test Standard and Limit

7.1.1 Test Standard

EN 55032: 2015

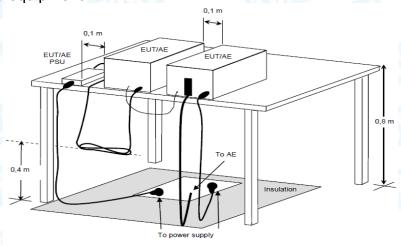
7.1.2 Test Limit

#### **Bellow 1GHz**

| Limit (dBμV/m) (3m)     |                           |  |  |
|-------------------------|---------------------------|--|--|
| Frequency Quasi-peak Le |                           |  |  |
| Class A                 | Class B                   |  |  |
| 50                      | 40                        |  |  |
| 57                      | 47                        |  |  |
|                         | Quasi-pe<br>Class A<br>50 |  |  |

**Remark:** 1. The lower limit shall apply at the transition frequency.

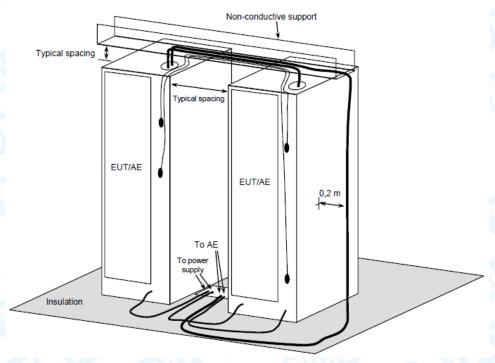
2. The test distance is 3m.


#### **Above 1GHz**

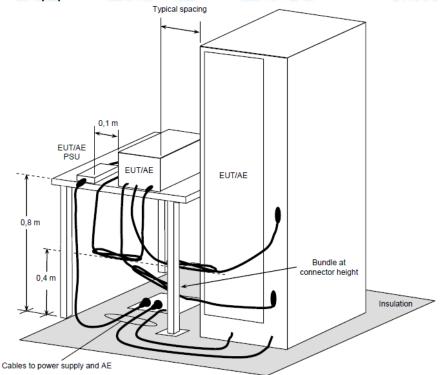
| _                  | Limit (dBμV/m) (3m) |         |         |         |  |
|--------------------|---------------------|---------|---------|---------|--|
| Frequency<br>(GHz) | Class A             |         | Class B |         |  |
| (31.2)             | Peak                | Average | Peak    | Average |  |
| 1~3                | 76                  | 56      | 70      | 50      |  |
| 3~6                | 80                  | 60      | 74      | 54      |  |

Remark: 1. The lower limit shall apply at the transition frequency.

2. The test distance is 3m.


# 7.2 Test Setup








☐ For floor standing equipment



☐ For combination equipment





Report No.: TB-EMC172573
Page: 26 of 72

#### 7.3 Test Procedure

Measurement was performed according to clause 7.3 of CISPR 16-2-3.

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m. The table was rotated 360 degrees to determine the position of the highest radiation. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range.

If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

| Highest internal frequency | Highest measured frequency       | Measured  |
|----------------------------|----------------------------------|-----------|
| (Fx)                       | for radiated measurement         | Bandwidth |
| Fx ≤ 108 MHz               | 1 GHz                            | 120kHz    |
| 108 MHz < Fx ≤ 500 MHz     | 2 GHz                            | 1MHz      |
| 500 MHz < Fx ≤ 1 GHz       | 5 GHz                            | 1MHz      |
| Fx > 1 GHz                 | 5*Fx up to a maximum of 6<br>GHz | 1MHz      |

**NOTE 1:** For FM and TV broadcast receivers, Fx is determined from the highest frequency generated orused excluding the local oscillator and tuned frequencies.

NOTE 2: For outdoor units of home satell Equipment receiving systems highest measured frequency shall be

#### 7.4 Deviation From Test Standard

No deviation

#### 7.5 Test Data

Please refer to the Attachment C.

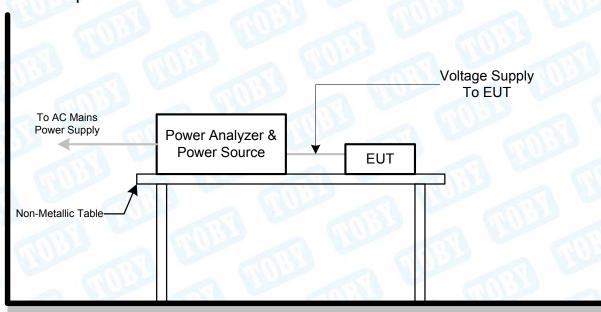


Report No.: TB-EMC172573 Page: 27 of 72



# **Harmonic Current Emission Test**

# 8.1 Test Standard and Limit


8.1.1. Test Standard EN 61000-3-2:2014

#### 8.1.2 Limits

#### **Harmonic Current Test Limit**

| Limits for Class A equipment |                                      |        | Limits for Class D equipment         |                          |                                               |                                          |
|------------------------------|--------------------------------------|--------|--------------------------------------|--------------------------|-----------------------------------------------|------------------------------------------|
|                              | Maximum permissible harmonic Current |        | Maximum permissible harmonic Current | Harmonic<br>Order<br>(n) | Maximum Permissible Harmonic Current per watt | Maximum Permissible Harmonic Current (A) |
| 3                            | ( <b>A</b> )                         | 2      | ( <b>A</b> )                         | 3                        | (mA/W)<br>3.4                                 | 2.30                                     |
| 5                            | 1.14                                 | 4      | 0.43                                 | 5                        | 1.9                                           | 1.14                                     |
| 7                            | 0.77                                 | 6      | 0.30                                 | 7                        | 1.0                                           | 0.77                                     |
| 9                            | 0.40                                 | 8≤n≤40 | 0.23X8/n                             | 9                        | 0.5                                           | 0.40                                     |
| 11                           | 0.33                                 |        |                                      | 11                       | 0.35                                          | 0.33                                     |
| 13                           | 0.21                                 |        | 133 -                                | 15≤n≤39                  | 3.85/n                                        | 0.15X15/n                                |
| 15≤n≤39                      | 0.15X15/n                            | J ATT  | CITIE .                              | (odd harmonics only)     |                                               |                                          |

# 8.2 Test Setup





Page: 28 of 72

#### 8.3 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.

The classification of EUT is according to section 5 of EN 61000-3-2: 2006. The EUT is classified as follows:

**Class A:** Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class B: Portable tools. Arc welding equipment which is not professional equipment.

Class C: Lighting equipment.

**Class D:** Equipment having a specified power less than or equal to600 W of the following types: Personal computers and personal computer monitors and television receivers.

#### 8.4 Deviation From Test Standard

No deviation

### 8.5 Test Data

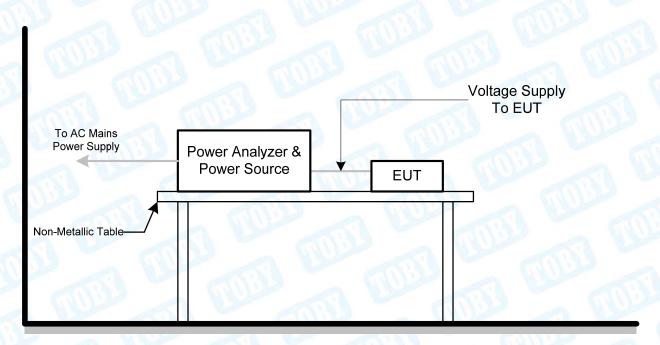
Please refer to the Attachment D.



Report No.: TB-EMC172573
Page: 29 of 72

# 9 Voltage Fluctuation and Flicker Test

### 9.1 Test Standard and Limit


9.1.1. Test Standard EN 61000-3-3:2013

#### 9.1.2. Limit

**Voltage Fluctuation and Flicker Test Limit** 

| Voltago i lactaation and i notor 100t Emile |                           |  |
|---------------------------------------------|---------------------------|--|
| Test Items                                  | Limits                    |  |
| Pst                                         | 1.0                       |  |
| dc                                          | 3.3%                      |  |
| dmax                                        | 4.0%                      |  |
| dt                                          | Not exceed 3.3% for 500ms |  |

# 9.2 Test Setup





Page: 30 of 72

#### 9.3 Test Procedure

#### 9.3.1 Harmonic Current Test

Test was performed according to the procedures specified in Clause 5.0 of IEC555-2 and/or Sub-clause 6.2 of IEC/EN 61000-3-2 depend on which standard adopted for compliance measurement.

#### 9.3.2 Fluctuation and Flickers Test:

Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.

All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

For the actual test configuration, please refer to the related Item –Block Diagram of system tested (please refer to 1.3).

#### 9.4 Deviation From Test Standard

No deviation

#### 9.5 Test Data

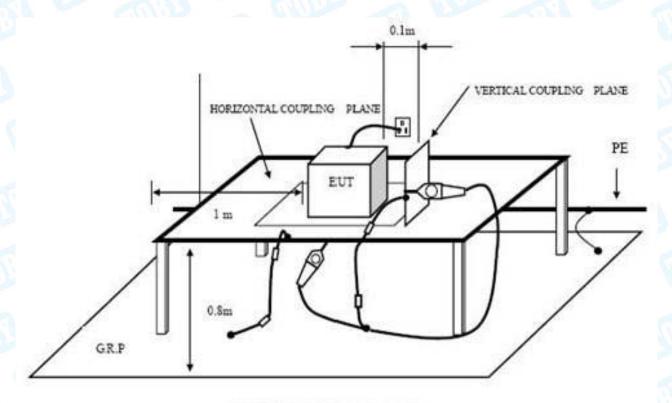
Please refer to the Attachment E.





# 10 Electrostatic Discharge Immunity Test

# 10.1 Test Requirements


10.1.1. Test Standard EN 55035:2017 (EN 61000-4-2)

#### 10.1.2. Test Level

| Discharge Impedance: | 330 ohm/ 150pF                                                                           |  |
|----------------------|------------------------------------------------------------------------------------------|--|
| Discharge Voltage:   | Air Discharge: 2kV/4kV/8kV(Direct) Contact Discharge: 2kV/4kV (Direct /Indirect)         |  |
| Polarity:            | Positive& Negative                                                                       |  |
| Number of Discharge: | Air Discharge: min.20 times at each test point Contact Discharge: min.200 times in total |  |
| Discharge Mode:      | Single Discharge                                                                         |  |
| Discharge Period:    | 1 second minimum                                                                         |  |

#### 10.1.2 Performance criterion: B

# 10.2 Test Setup



INDIRECT DISCHARGE SETUP



Report No.: TB-EMC172573
Page: 32 of 72

10.3 Test Procedure

#### 10.3.1 Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

#### 10.3.2 Contact Discharge:

All the procedure shall be same as air discharge. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

#### 10.3.3 Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

#### 10.3.4 Indirect discharge for vertical coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

#### 10.4 Deviation From Test Standard

No deviation

#### 10.5 Test Data

Please refer to the Attachment F.

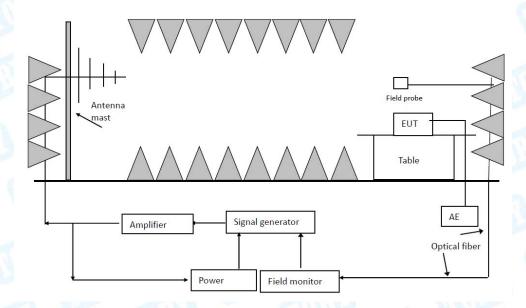




# 11 Radiated Electromagnetic Field Immunity Test

# 11.1 Test Requirements

### 11.1.1. Test Standard


EN 55035:2017 (EN 61000-4-3)

#### 11.1.2. Test Level

| Level | Field Strength V/m |  |
|-------|--------------------|--|
| 1     | (1)                |  |
| 2     | 3                  |  |
| 3     | 10                 |  |
| X     | Special            |  |

Performance criterion: A

### 11.2 Test Setup





Report No.: TB-EMC172573
Page: 34 of 72

#### 11.3 Test Procedure

The EUT are placed on a table, which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna, which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna is set on test. Each of the four sides of the EUT must be faced this transmitting antenna and measured individually.

In order to judge the EUT performance, a camera is used to monitor its screen.

All the scanning conditions are as following:

| Condition of Test      | Remark                                           |  |  |
|------------------------|--------------------------------------------------|--|--|
| Fielded strength       | 3V/m (Severity Level 2)                          |  |  |
| Radiated signal        | Modulated                                        |  |  |
| Scanning frequency     | 80-1000MHz, 1800MHz, 2600MHz<br>3500MHz, 5000MHz |  |  |
| Sweep time of radiated | 0.0015 Decade/s                                  |  |  |
| Dwell time             | 1 Sec.                                           |  |  |

### 11.4 Deviation From Test Standard

No deviation

#### 11.5 Test Data

Please refer to the Attachment G.

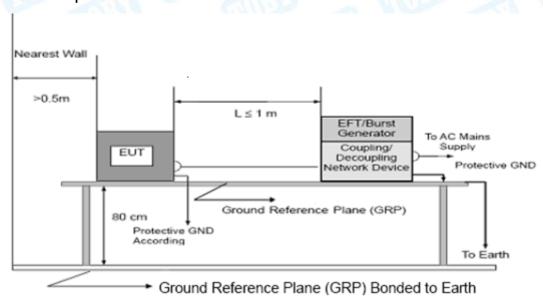


Report No.: TB-EMC172573
Page: 35 of 72

12 Electrical Fast Transient/Burst Test

# 12.1 Test Requirements

#### 12.1.1.Test Standard


EN 55035:2017 (EN 61000-4-4)

#### 12.1.2.Level

|                       | AC mains power ports | Analogue/Digital Data Ports | DC Network Power Ports |
|-----------------------|----------------------|-----------------------------|------------------------|
| Test Voltage:         | 1 KV                 | 0.5 KV                      | 0.5KV                  |
| Polarity:             | Positive&Negative    |                             |                        |
| Impulse Wave Shape:   | 5/50ns               |                             |                        |
| Repetition Frequency: | 5KHz                 |                             |                        |
| Burst Duration:       | 15ms                 |                             |                        |
| Burst Period:         | 300ms                |                             |                        |
| Test Duration:        | Not less than 1 min  |                             |                        |

#### 12.1.3. Performance criterion: B

# 12.2 Test Setup





Page: 36 of 72

#### 12.3 Test Procedure

#### 12.3.1 For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1minute.

#### 12.3.2 For signal lines and control lines ports:

A coupling clamp is use to couple the EFT interference signal to the signal and control lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1 minute.

#### 12.3.3 For DC input and DC output power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1 minute.

#### 12.4 Deviation From Test Standard

No deviation

#### 12.5 Test Data

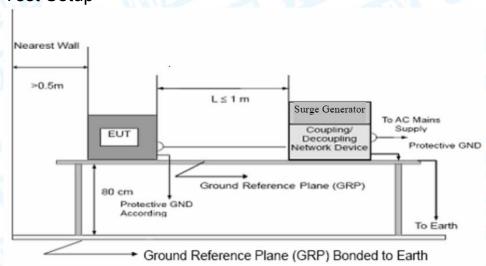
Please refer to the Attachment H.

Report No.: TB-EMC172573
Page: 37 of 72

# 13 Surge Immunity Test

## 13.1 Test Requirements

## 13.1.1.Test Standard


EN 55035:2017 (EN 61000-4-5)

## 13.1.2.Level

| Basic Standard:        | EN 61000-4-5                                          |  |  |
|------------------------|-------------------------------------------------------|--|--|
|                        | Analogue/digital data ports: 0.5KV (see a)            |  |  |
| Test Requirement:      | DC network power ports: 0.5KV                         |  |  |
|                        | AC mains power ports: 1KV(Line-Line), 2KV(Line-earth) |  |  |
| Tr/Th                  | 1.2/50us, 10/700us                                    |  |  |
| Generator Source:      | 2 ohm between networks                                |  |  |
| Impedance:             | 12 ohm between network and ground                     |  |  |
| Polarity:              | Positive/Negative                                     |  |  |
| Phase Angle:           | 0/90/180/270                                          |  |  |
| Pulse Repetition Rate: | 1 time/min.(maximum)                                  |  |  |
| Number of Tests:       | 5 positive and 5 negative at selected points          |  |  |

#### 13.1.3.Performance criterion: B

## 13.2 Test Setup





Report No.: TB-EMC172573
Page: 38 of 72

13.3 Test Procedure

Set up the EUT and test generator as shown on Section 11.1.2.

At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.

Different phase angles are done individually.

Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

## 13.4 Deviation From Test Standard

No deviation

## 13.5 Test Data

Please refer to the Attachment I.



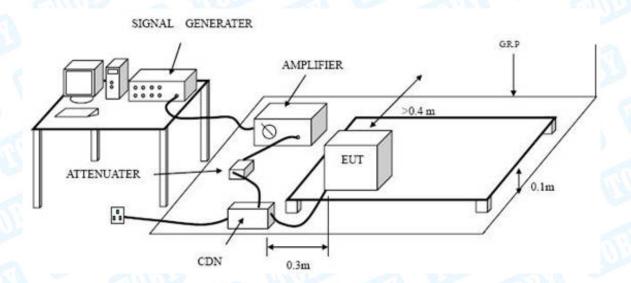
Report No.: TB-EMC172573

Page: 39 of 72

# **14 Conducted Immunity Test**

## 14.1 Test Requirements

## 14.1.1.Test Standard


EN 55035:2017 (EN 61000-4-6)

## 14.1.2.Level

| Port                                            | Test Specification                            |
|-------------------------------------------------|-----------------------------------------------|
| MODE                                            | 0.15MHz~10MHz<br>3V(r.m.s.) (unmodulated)     |
| Input AC power port/ Signal Port/ Input DC Port | 10MHz~30MHz<br>3V to 1V(r.m.s.) (unmodulated) |
|                                                 | 30MHz~80MHz<br>1V(r.m.s.) (unmodulated)       |

## 14.1.3.Performance criterion: A

## 14.2 Test Setup





Report No.: TB-EMC172573
Page: 40 of 72

14.3 Test Procedure

Set up the EUT, CDN and test generators.

Let the EUT work in test mode and test it.

The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).

The disturbance signal description below is injected to EUT through CDN.

The EUT operates within its operational mode(s) under intended climatic conditions after power on.

The frequency range is swept from 0.150MHz to 10MHz using 3V signal level; 10MHz to 30MHz using 3V to 1V signal level; 30MHz to 80MHz using 1V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave.

The rate of sweep shall not exceed 1.5\*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

## 14.4 Deviation From Test Standard

No deviation

#### 14.5 Test Data

Please refer to the Attachment J.

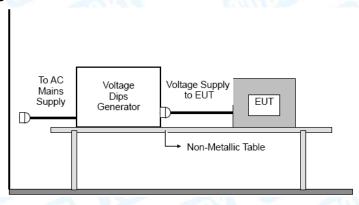


Report No.: TB-EMC172573
Page: 41 of 72

# 15 Voltage Dips and Interruptions Immunity Test

## 15.1 Test Requirements

## 15.1.1.Test Standard


EN 55035:2017 (EN 61000-4-11)

#### 15.1.2.Level

| Basic Standard:         | EN 61000-4-11                                                                                                      |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|
| Required Performance:   | B(For 100%, 0.5 cycle Voltage Dips) C(For 70%, 25 cycle Voltage Dips) C(For 100%, 250 cycle Voltage Interruptions) |
| Test Duration Time:     | Minimum three test events in sequence                                                                              |
| Interval Between Event: | Minimum ten seconds                                                                                                |
| Phase Angle:            | 0°/45°/90°/135°/180°/225°/270°/315°/360°                                                                           |
| Test Cycle:             | 3 times                                                                                                            |

#### 15.1.3.Performance criterion: B&C

## 15.2 Test Setup



#### 15.3 Test Procedure

Set up the EUT and test generator as shown above. The EUT is tested for each selected combination of test level and duration with a sequence of three dips/interruptions with intervals of 10s minimum.

#### 15.4 Deviation From Test Standard

No deviation

## 15.5 Test Data

Please refer to the Attachment K.





# 16 Photographs - Constructional Details

**Photo 1 Appearance of EUT** 



**Photo 2 Appearance of EUT** 







43 of 72 Page:

**Photo 3 Appearance of EUT** 



**Photo 4 Internal of EUT** 



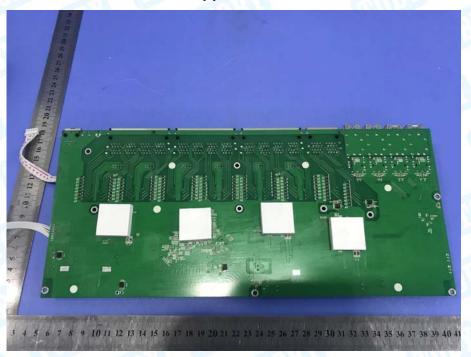
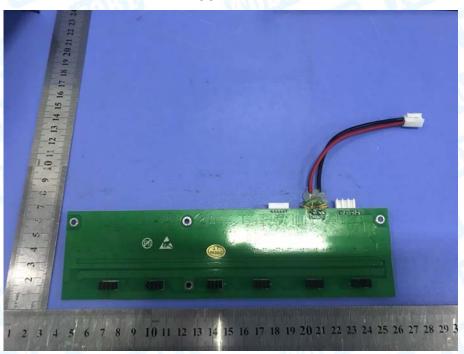




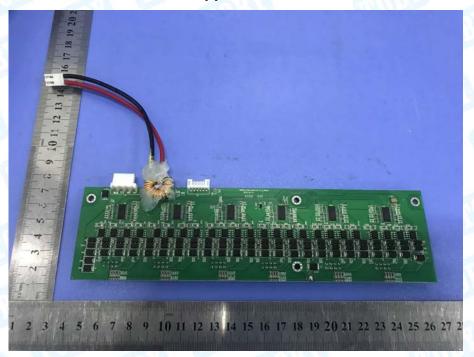

Photo 5 Appearance of PCB



**Photo 6 Appearance of PCB** 



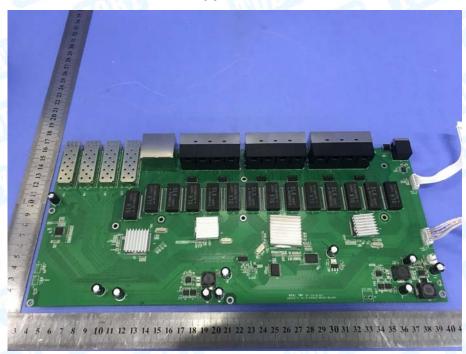



45 of 72

## **Photo 7 Appearance of PCB**




**Photo 8 Appearance of PCB** 





Report No.: TB-EMC172573 Page: 46 of 72

## **Photo 9 Appearance of PCB**







# 17 Photographs - Test Setup

## **Conducted Emission Test Setup**



**Conducted Emission (Asymmetric Mode) Test Setup** 







**Radiated Emission Test Setup** 



Harmonic current emissions and Voltage fluctuations & flicker Test Setup







49 of 72

## **Electrostatic Discharge Test Setup**



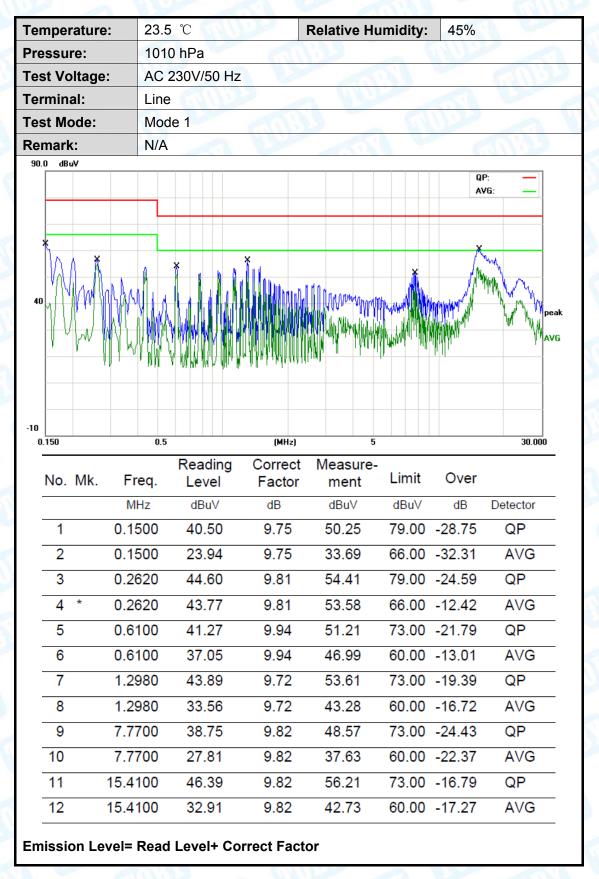
**EFT, Surge, Voltage Dips Test Setup** 





Report No.: TB-EMC172573

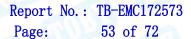
Page: 50 of 72


## Radio-frequency, Continuous Conducted Disturbance Test Setup









# **Attachment A--Conducted Emission Data (AC Mains)**

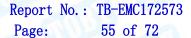






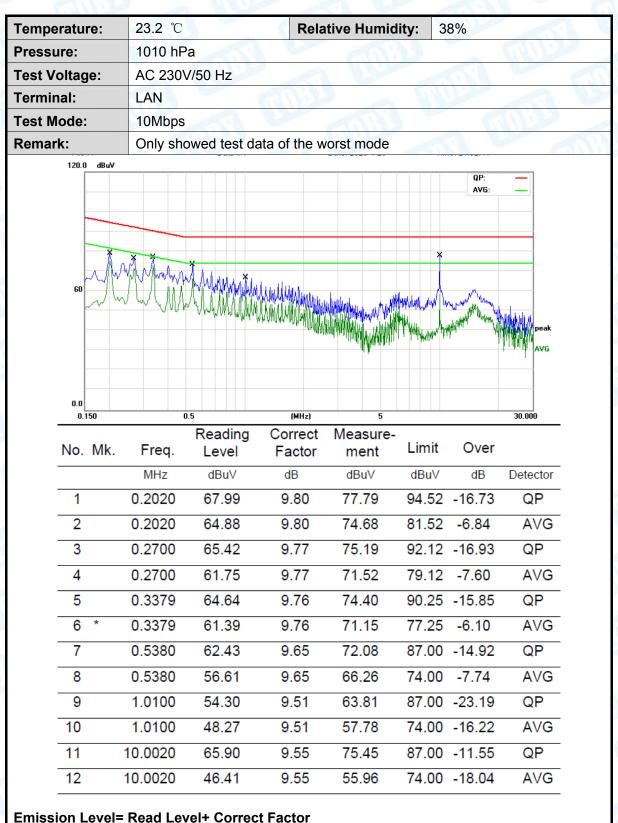
Temperature: 23.5 ℃ 45% **Relative Humidity:** Pressure: 1010 hPa Test Voltage: AC 230V/50 Hz Terminal: Neutral Test Mode: Mode 1 Remark: N/A dBuV QP: AVG: -10 0.150 (MHz) 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dBuV dBuV dB dΒ Detector 0.1580 40.93 50.54 79.00 -28.46 QΡ 1 9.61 2 0.1580 AVG 23.76 9.61 33.37 66.00 -32.63 0.2700 QΡ 3 38.93 9.69 48.62 79.00 -30.38 0.2700 66.00 -26.97 29.34 9.69 39.03 AVG 4 5 0.4380 38.96 9.77 48.73 79.00 -30.27 QΡ 9.77 0.4380 35.86 45.63 66.00 -20.37 AVG 6 7 1.3060 73.00 -22.64 QP 40.67 9.69 50.36 1.3060 40.29 60.00 -19.71 8 30.60 9.69 AVG 73.00 -28.09 9 7.6340 35.05 9.86 44.91 QΡ 10 7.6340 24.01 9.86 33.87 60.00 -26.13 **AVG** 11 18.4500 39.20 9.69 48.89 73.00 -24.11 QΡ AVG 12 18.4500 26.42 9.69 36.11 60.00 -23.89 Emission Level= Read Level+ Correct Factor






23.5 ℃ 45% Temperature: **Relative Humidity:** Pressure: 1010 hPa Test Voltage: AC 110V/60 Hz Terminal: Line Test Mode: Mode 1 Remark: N/A 90.0 dBuV QP: AVG: -10 0.150 0.5 (MHz) 30.000 Reading Correct Measure-Over Limit No. Mk. Freq. Level Factor ment dBuV MHz dB dBuV dBuV dΒ Detector 0.1700 43.58 9.79 53.37 79.00 -25.63 QΡ 1 2 0.1700 39.79 9.79 49.58 66.00 -16.42 AVG 3 0.4340 41.78 9.88 51.66 79.00 -27.34 QΡ 4 0.4340 51.47 66.00 -14.53 41.59 9.88 AVG 5 0.6060 42.05 9.95 52.00 73.00 -21.00 QΡ 0.6060 41.15 9.95 51.10 60.00 -8.90 AVG 6 7 1.2940 45.58 9.72 55.30 73.00 -17.70 QΡ 1.2940 45.42 9.72 55.14 60.00 -4.86 AVG 8 7.6260 35.54 9.82 45.36 73.00 -27.64 QΡ 9 10 7.6260 28.71 9.82 38.53 60.00 -21.47 **AVG** 11 15.2500 46.11 9.82 55.93 73.00 -17.07 QΡ 12 15.2500 37.96 9.82 47.78 60.00 -12.22 AVG Emission Level= Read Level+ Correct Factor






23.5 ℃ 45% Temperature: **Relative Humidity:** Pressure: 1010 hPa Test Voltage: AC 110V/60 Hz Terminal: Neutral Test Mode: Mode 1 Remark: N/A 90.0 dBuV QP: AVG: -10 0.150 0.5 (MHz) 30.000 Measure-Reading Correct Limit Over No. Mk. Freq. Factor Level ment MHz dBuV dB dBuV dBuV dB Detector 43.45 79.00 -25.93 0.1700 9.62 53.07 QΡ 1 2 0.1700 39.18 9.62 48.80 66.00 -17.20 AVG 3 0.2580 45.19 9.69 54.88 79.00 -24.12 QΡ 0.2580 4 45.13 9.69 54.82 66.00 -11.18 **AVG** 5 0.4340 38.70 9.77 48.47 79.00 -30.53 QΡ 0.4340 38.50 9.77 48.27 66.00 -17.73 AVG 6 7 1.2940 42.15 51.83 73.00 -21.17 QΡ 9.68 1.2940 60.00 -8.49 8 41.83 9.68 51.51 **AVG** 7.6980 30.19 9.86 40.05 73.00 -32.95 QΡ 9 10 7.6980 23.20 60.00 -26.94 AVG 9.86 33.06 73.00 -21.17 11 18.4300 42.13 9.70 51.83 QΡ 12 18.4300 32.76 9.70 42.46 60.00 -17.54 AVG **Emission Level= Read Level+ Correct Factor** 






# **Attachment B--Conducted Emission Data (Asymmetric Mode)**







23.2 ℃ **Relative Humidity:** Temperature: 38% Pressure: 1010 hPa AC 230V/50 Hz Test Voltage: Terminal: LAN **Test Mode:** 100Mbps Remark: Only showed test data of the worst mode 120.0 dBuV QP: AVG: GΠ 0.0 0.150 0.5 (MHz) 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dΒ Detector 1 0.2020 66.98 9.80 76.78 94.52 -17.74 QΡ 2 0.2020 61.40 9.80 71.20 81.52 -10.32 AVG 3 0.2700 64.91 9.77 74.68 92.12 -17.44 QΡ 4 0.2700 61.38 9.77 71.15 79.12 -7.97 AVG 5 0.3379 64.49 9.76 74.25 90.25 -16.00 QΡ 6 0.3379 61.33 9.76 71.09 77.25 -6.16 AVG 7 0.5380 62.18 9.65 71.83 87.00 -15.17 QP 0.5380 56.40 9.65 66.05 74.00 -7.95 AVG 8 9 1.0780 53.93 9.51 63.44 87.00 -23.56 QΡ 10 1.0780 48.56 9.51 58.07 74.00 -15.93 AVG 11 1.5500 53.30 9.52 62.82 87.00 -24.18 QΡ 12 1.5500 47.70 9.52 57.22 74.00 -16.78 AVG **Emission Level= Read Level+ Correct Factor** 





23.2 ℃ **Relative Humidity:** Temperature: 38% Pressure: 1010 hPa Test Voltage: AC 230V/50 Hz Terminal: LAN **Test Mode:** 1000Mbps Remark: Only showed test data of the worst mode 120.0 dBuV AVG: AVG 0.0 0.150 0.5 (MHz) 30.000 Correct Reading Measure-Limit Over No. Mk. Freq. Level Factor ment dBu∀ dB MHz dΒ dBuV dBuV Detector 1 0.2020 68.01 9.78 77.79 94.52 -16.73 QP 2 9.78 74.69 AVG 0.2020 64.91 81.52 -6.83 0.2700 75.24 QP 3 65.42 9.82 92.12 -16.88 4 0.2700 61.75 71.57 79.12 -7.55 AVG 9.82 90.25 -15.70 0.3379 64.72 QP 5 9.83 74.55 77.25 -5.99 0.3379 61.43 9.83 71.26 AVG 6 QP 7 0.5380 62.06 9.95 72.01 87.00 -14.99 0.5380 56.25 66.20 74.00 -7.80 AVG 8 9.95 9 1.0780 53.63 9.66 63.29 87.00 -23.71 QP 10 1.0780 48.29 9.66 57.95 74.00 -16.05 AVG 11 18.2420 51.26 9.85 87.00 -25.89 QP 61.11 12 18.2420 47.05 9.85 56.90 74.00 -17.10 AVG **Emission Level= Read Level+ Correct Factor** 





**Attachment C--Radiated Emission Test Data** 

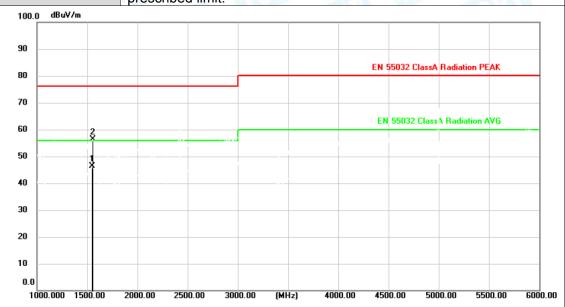
## ----Below 1G

| Temperature:  | 23.5 ℃                 | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | elative Humidity:                      | 43%                                  |
|---------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|
| Pressure:     | 1010 hPa               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | CHILL:                               |
| Test Voltage: | AC 230V/50 Hz          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                      |
| Ant. Pol.     | Horizontal             | A I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                                      |
| Test Mode:    | Mode 1                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | THUL WALL                            |
| Remark:       | MIN.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                      |
| 80.0 dBuV/m   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                                      |
| -20           |                        | 2<br>Name of the state of the stat | ************************************** | 32-ClassA 3M Radiation  Margin 66 dB |
| 30.000 40 5   |                        | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300 40                                 | 0 500 600 700 1000.000               |
| No. Mk.       | Reading<br>Freq. Level | Correct<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measure-<br>ment Lin                   | nit Over                             |
|               | MHz dBuV               | dB/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dBuV/m dBu                             | IV/m dB Detector                     |
| 1 8           | 1.7833 56.29           | -22.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.83 50                               | .00 -16.17 peak                      |
| 2 12          | 5.4457 63.72           | -22.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41.33 50                               | .00 -8.67 peak                       |
| 3 24          | 9.4250 62.89           | -17.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.81 57                               | .00 -11.19 peak                      |
| 4 36          | 6.8231 52.36           | -13.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38.74 57                               | .00 -18.26 peak                      |
| 5 53          | 1.9635 48.91           | -9.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39.52 57                               | .00 -17.48 peak                      |
| 6 * 75        | 0.1083 55.51           | -6.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49.09 57                               | .00 -7.91 peak                       |
| Emission Leve | = Read Level+ Corr     | ect Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |





Temperature: 23.5 ℃ 43% **Relative Humidity:** Pressure: 1010 hPa Test Voltage: AC 230V/50 Hz Ant. Pol. Vertical Test Mode: Mode 1 Remark: 80.0 dBuV/m EN55032 ClassA 3M Radiation Mayorman -20 (MHz) 30.000 60 70 600 700 1000.000 40 50 400 Measure-Reading Correct Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dBuV/m dBuV/m dΒ Detector dB/m 1 47.6586 63.50 -22.5640.94 50.00 -9.06 peak 2 85.8984 62.76 -22.24 40.52 50.00 -9.48peak 3 125.4457 60.98 -22.39 38.59 50.00 -11.41 peak 4 184.4898 56.66 -19.9736.69 50.00 -13.31peak 5 269.4284 54.26 -16.6437.62 57.00 -19.38peak 6 689.5644 52.02 -6.8545.17 57.00 -11.83 peak


**Emission Level= Read Level+ Correct Factor** 



Report No.: TB-EMC172573 Page: 60 of 72

## ----Above 1G

| Temperature:  | 23.5 ℃                                       | Relative Humidity:     | 43%                             |
|---------------|----------------------------------------------|------------------------|---------------------------------|
| Pressure:     | 1010 hPa                                     |                        |                                 |
| Test Voltage: | AC 230V/50 Hz                                |                        |                                 |
| Ant. Pol.     | Horizontal                                   |                        | (1) (1) (1) (1) (1) (1) (1) (1) |
| Test Mode:    | Mode 1                                       |                        |                                 |
| Remark:       | No report for the emission prescribed limit. | n which more than 10 o | dB below the                    |
|               |                                              |                        |                                 |



| No. | Mk | k. Freq. |       |       | Measure-<br>ment | Limit | Over   |          |
|-----|----|----------|-------|-------|------------------|-------|--------|----------|
|     |    | MHz      | dBu∨  | dB    | dBuV/m           | dB/m  | dB     | Detector |
| 1   | *  | 1550.000 | 47.98 | -1.68 | 46.30            | 56.00 | -9.70  | AVG      |
| 2   |    | 1555.000 | 58.07 | -1.66 | 56.41            | 76.00 | -19.59 | peak     |

**Emission Level= Read Level+ Correct Factor** 



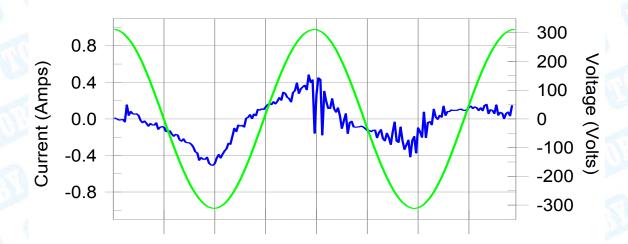
61 of 72

| Temperature:  | 23.5 °C                             | Relative Humidity: 43%                   |
|---------------|-------------------------------------|------------------------------------------|
| Pressure:     | 1010 hPa                            |                                          |
| Test Voltage: | AC 230V/50 Hz                       |                                          |
| Ant. Pol.     | Vertical                            |                                          |
| Test Mode:    | Mode 1                              |                                          |
| Remark:       | No report for the prescribed limit. | emission which more than 10 dB below the |
| 100.0 dBuV/m  |                                     |                                          |
| 90            |                                     |                                          |
| 80            |                                     | EN 55032 ClassA Radiation PEAK           |
| 70            |                                     | -                                        |
| 60            |                                     | EN 55032 ClassA Radiation AVG            |
| 50            |                                     |                                          |
| 40            |                                     |                                          |
| 30            |                                     |                                          |
| 20            |                                     |                                          |
| 10            |                                     |                                          |
| 0.0           |                                     |                                          |

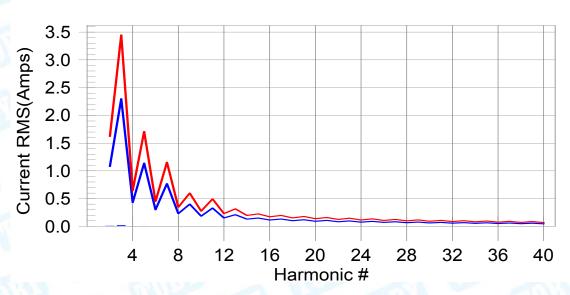
| No. | Mk. | Freq.    |       |       | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|-------|-------|------------------|-------|--------|----------|
|     |     | MHz      | dBu∀  | dB    | dBuV/m           | dB/m  | dB     | Detector |
| 1   |     | 1100.000 | 60.50 | -5.39 | 55.11            | 76.00 | -20.89 | peak     |
| 2   | *   | 1100.000 | 49.72 | -5.39 | 44.33            | 56.00 | -11.67 | AVG      |

**Emission Level= Read Level+ Correct Factor** 






**Attachment D--Harmonic Current Emission Test Data** 


Harmonics - Class-A per Ed. Ed. 5.0 (2018)(Run time)

Test Result: Pass Source qualification: Normal

**Current & voltage waveforms** 



#### Harmonics and Class A limit line European Limits



Test result: Pass Worst harmonics H2-0.8% of 150% limit, H3-.7% of 100% limit





## **Current Test Result Summary (Run time)**

**Test Result: Pass** 

Source qualification: Normal I-THD(%): 18.4 POHC(A): 0.002 THC(A): 0.020 POHC Limit(A): 0.251

Highest parameter values during test:

V\_RMS (Volts): 220.33

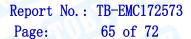
I\_Peak (Amps): 0.690

I\_Fund (Amps): 0.107

Power (Watts): 16.1 50.00 0.163 5.043 Frequency(Hz): I\_RMS (Amps): Crest Factor:

|        | Power (Watts) | <b>:</b> 16.1 |           | Power Factor: | 0.552     |           |        |  |
|--------|---------------|---------------|-----------|---------------|-----------|-----------|--------|--|
| Harm#  | Harms(avg)    | 100%Limit     | %of Limit | Harms(max)    | 150%Limit | %of Limit | Status |  |
| 2      | 0.007         | 1.080         | 0.6       | 0.013         | 1.620     | 0.8       | Pass   |  |
| 3      | 0.017         | 2.300         | 0.7       | 0.019         | 3.450     | 0.6       | Pass   |  |
| 3<br>4 | 0.003         | 0.430         | N/A       | 0.004         | 0.645     | N/A       | Pass   |  |
| 5      | 0.005         | 1.140         | N/A       | 0.005         | 1.710     | N/A       | Pass   |  |
| 6      | 0.001         | 0.300         | N/A       | 0.002         | 0.450     | N/A       | Pass   |  |
| 7      | 0.002         | 0.770         | N/A       | 0.002         | 1.155     | N/A       | Pass   |  |
| 8      | 0.001         | 0.230         | N/A       | 0.001         | 0.345     | N/A       | Pass   |  |
| 8 9    | 0.001         | 0.400         | N/A       | 0.001         | 0.600     | N/A       | Pass   |  |
| 10     | 0.001         | 0.184         | N/A       | 0.001         | 0.276     | N/A       | Pass   |  |
| 11     | 0.001         | 0.330         | N/A       | 0.001         | 0.495     | N/A       | Pass   |  |
| 12     | 0.001         | 0.153         | N/A       | 0.001         | 0.230     | N/A       | Pass   |  |
| 13     | 0.001         | 0.210         | N/A       | 0.001         | 0.315     | N/A       | Pass   |  |
| 14     | 0.001         | 0.131         | N/A       | 0.001         | 0.197     | N/A       | Pass   |  |
| 15     | 0.001         | 0.150         | N/A       | 0.001         | 0.225     | N/A       | Pass   |  |
| 16     | 0.001         | 0.115         | N/A       | 0.001         | 0.173     | N/A       | Pass   |  |
| 17     | 0.001         | 0.132         | N/A       | 0.001         | 0.198     | N/A       | Pass   |  |
| 18     | 0.001         | 0.102         | N/A       | 0.001         | 0.153     | N/A       | Pass   |  |
| 19     | 0.001         | 0.118         | N/A       | 0.001         | 0.178     | N/A       | Pass   |  |
| 20     | 0.001         | 0.092         | N/A       | 0.001         | 0.138     | N/A       | Pass   |  |
| 21     | 0.001         | 0.107         | N/A       | 0.001         | 0.161     | N/A       | Pass   |  |
| 22     | 0.001         | 0.084         | N/A       | 0.001         | 0.125     | N/A       | Pass   |  |
| 23     | 0.001         | 0.098         | N/A       | 0.001         | 0.147     | N/A       | Pass   |  |
| 24     | 0.001         | 0.077         | N/A       | 0.001         | 0.115     | N/A       | Pass   |  |
| 25     | 0.001         | 0.090         | N/A       | 0.001         | 0.135     | N/A       | Pass   |  |
| 26     | 0.001         | 0.071         | N/A       | 0.002         | 0.107     | N/A       | Pass   |  |
| 27     | 0.001         | 0.083         | N/A       | 0.001         | 0.125     | N/A       | Pass   |  |
| 28     | 0.001         | 0.066         | N/A       | 0.002         | 0.099     | N/A       | Pass   |  |
| 29     | 0.001         | 0.078         | N/A       | 0.001         | 0.116     | N/A       | Pass   |  |
| 30     | 0.001         | 0.061         | N/A       | 0.001         | 0.092     | N/A       | Pass   |  |
| 31     | 0.001         | 0.073         | N/A       | 0.001         | 0.109     | N/A       | Pass   |  |
| 32     | 0.001         | 0.058         | N/A       | 0.001         | 0.086     | N/A       | Pass   |  |
| 33     | 0.001         | 0.068         | N/A       | 0.001         | 0.102     | N/A       | Pass   |  |
| 34     | 0.001         | 0.054         | N/A       | 0.001         | 0.081     | N/A       | Pass   |  |
| 35     | 0.001         | 0.064         | N/A       | 0.001         | 0.096     | N/A       | Pass   |  |
| 36     | 0.001         | 0.051         | N/A       | 0.001         | 0.077     | N/A       | Pass   |  |
| 37     | 0.001         | 0.061         | N/A       | 0.001         | 0.091     | N/A       | Pass   |  |
| 38     | 0.001         | 0.048         | N/A       | 0.001         | 0.073     | N/A       | Pass   |  |
| 39     | 0.001         | 0.058         | N/A       | 0.001         | 0.087     | N/A       | Pass   |  |
| 40     | 0.001         | 0.046         | N/A       | 0.001         | 0.069     | N/A       | Pass   |  |






## **Voltage Source Verification Data (Run time)**

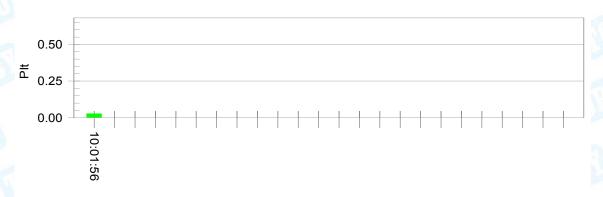
**Test Result: Pass** Source qualification: Normal

Highest parameter values during test:
Voltage (Vrms): 220.33
I\_Peak (Amps): 0.690
I\_Fund (Amps): 0.107
Power (Watts): 16.1 50.00 0.163 5.043 0.552 Frequency(Hz): I\_RMS (Amps): Crest Factor: Power Factor:

| 1000        | oner (tradie).  | II HOUSE    | or ractors cic |        |
|-------------|-----------------|-------------|----------------|--------|
| Harm#       | Harmonics V-rms | Limit V-rms | % of Limit     | Status |
| 2           | 0.063           | 0.440       | 14.24          | ОК     |
| 3           | 0.465           | 1.982       | 23.48          | OK     |
| 2<br>3<br>4 | 0.051           | 0.441       | 11.56          | OK     |
| 5           | 0.047           | 0.881       | 5.29           | OK     |
| 5<br>6<br>7 | 0.027           | 0.441       | 6.14           | OK     |
|             | 0.036           | 0.661       | 5.43           | OK     |
| 8           | 0.007           | 0.441       | 1.50           | OK     |
| 9           | 0.016           | 0.441       | 3.65           | OK     |
| 10          | 0.011           | 0.441       | 2.43           | OK     |
| 11          | 0.012           | 0.220       | 5.51           | OK     |
| 12          | 0.012           | 0.220       | 5.48           | OK     |
| 13          | 0.009           | 0.220       | 3.95           | OK     |
| 14          | 0.006           | 0.220       | 2.94           | OK     |
| 15          | 0.011           | 0.220       | 5.12           | OK     |
| 16          | 0.008           | 0.220       | 3.82           | OK     |
| 17          | 0.007           | 0.220       | 3.23           | OK     |
| 18          | 0.010           | 0.220       | 4.35           | OK     |
| 19          | 0.009           | 0.220       | 3.91           | OK     |
| 20          | 0.007           | 0.220       | 3.39           | OK     |
| 21          | 0.005           | 0.220       | 2.47           | OK     |
| 22          | 0.005           | 0.220       | 2.33           | OK     |
| 23          | 0.005           | 0.220       | 2.36           | OK     |
| 24          | 0.003           | 0.220       | 1.51           | OK     |
| 25          | 0.004           | 0.220       | 1.67           | OK     |
| 26          | 0.004           | 0.220       | 1.99           | OK     |
| 27          | 0.006           | 0.220       | 2.84           | OK     |
| 28          | 0.004           | 0.220       | 1.78           | OK     |
| 29          | 0.005           | 0.220       | 2.20           | OK     |
| 30          | 0.004           | 0.220       | 1.74           | OK     |
| 31          | 0.004           | 0.220       | 1.90           | OK     |
| 32          | 0.004           | 0.220       | 1.63           | OK     |
| 33          | 0.004           | 0.220       | 1.99           | OK     |
| 34          | 0.003           | 0.220       | 1.51           | OK     |
| 35          | 0.004           | 0.220       | 1.81           | OK     |
| 36          | 0.003           | 0.220       | 1.55           | OK     |
| 37          | 0.005           | 0.220       | 2.11           | OK     |
| 38          | 0.003           | 0.220       | 1.52           | OK     |
| 39          | 0.004           | 0.220       | 2.00           | OK     |
| 40          | 0.005           | 0.220       | 2.47           | OK     |






Attachment E--Voltage Fluctuation and Flicker Test Data

Flicker Test Summary per EN/IEC61000-3-3 Ed. 3.0 (2013) (Run time)

Test Result: Pass Status: Test Completed



#### Plt and limit line



Parameter values recorded during the test:

| vrms at the end of test (voit): | 220.22 |                  |       |      |
|---------------------------------|--------|------------------|-------|------|
| T-max (mS):                     | 0      | Test limit (mS): | 500.0 | Pass |
| Highest dc (%):                 | 0.00   | Test limit (%):  | 3.30  | Pass |
| Highest dmax (%):               | 0.00   | Test limit (%):  | 4.00  | Pass |
| Highest Pst (10 min. period):   | 0.064  | Test limit:      | 1.000 | Pass |
| Highest Plt (2 hr. period):     | 0.028  | Test limit:      | 0.650 | Pass |
|                                 |        |                  |       |      |

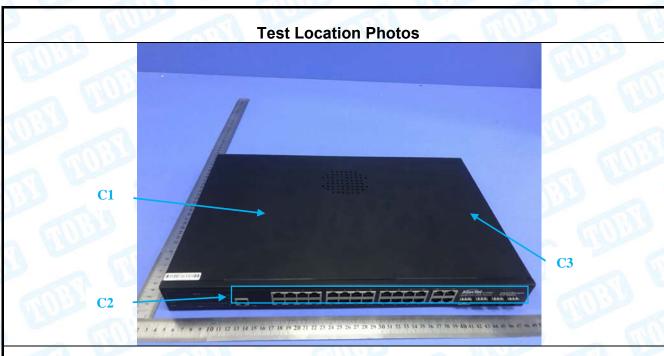


Report No.: TB-EMC172573 Page: 66 of 72

**Attachment F--Electrostatic Discharge Test Data** 

Temperature : 24.4℃ Humidity : 54%

Power supply : AC 230V/50Hz Test Mode : Mode 1


**Required Performance Criteria: B** 

Air Discharge: ±2/±4/±8kV Contact Discharge: ±2/±4kV

| Location | Test Level (kV)           | Judgment | Resul |
|----------|---------------------------|----------|-------|
| C1       |                           | A        |       |
| C2       | $\pm 2$ k $V \pm 4$ k $V$ | В        |       |
| C3       | (B) (C)                   | Α        | PASS  |
| HCP      | ±4kV                      | A        |       |
| VCP      | $\pm 4$ kV                | Α        |       |



Report No.: TB-EMC172573 Page: 67 of 72



#### Note:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.



Report No.: TB-EMC172573 Page: 68 of 72

# **Attachment G--RF Field Strength Susceptibility Test Data**

Temperature : 24.0℃ Humidity : 40%

Power supply : AC 230V/50Hz Test Mode : Mode 1

**Required Performance Criteria: A** 

Modulation: AM 80%, Field strength: 3V/m, Pulse: 1 kHz.

|          | A     | ctual Perform | nance Criteria | a    |      |
|----------|-------|---------------|----------------|------|------|
| Antenna  | Fre   | Result        |                |      |      |
| Polarity |       | EUT Po        | sition         |      |      |
|          | Front | Right         | Rear           | Left |      |
| Н        | Α     | A             | A              | A    | PASS |
| V        | A     | A             | A              | Α    | PASS |

| EUT Position | Frequency        |   |         |   |         |   |         |        |      |
|--------------|------------------|---|---------|---|---------|---|---------|--------|------|
|              | 1800MHz          |   | 2600MHz |   | 3500MHz |   | 5000MHz |        |      |
|              | Antenna Polarity |   |         |   |         |   |         | Result |      |
|              | Н                | V | н       | V | Ŧ       | V | Н       | V      |      |
| Front        | Α                | Α | Α       | Α | Α       | Α | Α       | Α      | PASS |
| Right        | Α                | Α | Α       | Α | Α       | Α | A       | Α      | PASS |
| Rear         | Α                | Α | Α       | Α | Α       | Α | Α       | Α      | PASS |
| Left         | Α                | Α | Α       | Α | A       | Α | Α       | Α      | PASS |

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test
- 3) Criteria C: The system shut down during the test.



Report No.: TB-EMC172573 Page: 69 of 72

# **Attachment H--Electrical Fast Transient/Burst Test Data**

Temperature : 24.4°C Humidity : 54%

Power supply : AC 230V/50Hz Test Mode : Mode 1

Required Performance Criteria: B

 $T_r/T_h$ : 5/50ns, Repetition Frequency: 5KHz

| Line                        | Voltage<br>(kV) |     | Performance<br>teria | Actual Per<br>Crit | Result |        |
|-----------------------------|-----------------|-----|----------------------|--------------------|--------|--------|
|                             |                 | (+) | (-)                  | (+)                | (-)    | Noodit |
| L 600                       | 1.0             | В   | В                    | Α                  | Α      | PASS   |
| N                           | 1.0             | В   | В                    | Α                  | Α      | PASS   |
| L-N                         | 1.0             | В   | В                    | Α                  | Α      | PASS   |
| L-PE                        | 1.0             | В   | В                    | Α                  | Α      | PASS   |
| N-PE                        | 1.0             | В   | В                    | Α                  | Α      | PASS   |
| L-N-PE                      | 1.0             | В   | В                    | Α                  | Α      | PASS   |
| Analogue/digital data ports | 0.5             | В   | В                    | Α                  | A      | PASS   |
| DC network power ports      | 0.5             | В   | В                    | 1                  | 1      | MOBIL  |

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.



Report No.: TB-EMC172573 Page: 70 of 72

# **Attachment I--Surge Immunity Test Data**

Temperature :  $24.4^{\circ}$  Humidity : 54%

Power supply : AC 230V/50Hz Test Mode : Mode 1

Required Performance Criteria: B

| Injected Line               | Voltage<br>(kV) | Phase | Actu<br>Perform<br>Criter | ance | Result |      |
|-----------------------------|-----------------|-------|---------------------------|------|--------|------|
|                             |                 | 3     | (+)                       | (-)  | (+)    | (-)  |
| OHD:                        | 1.0             | 0°    | Α                         | Α    | PASS   | PASS |
| T N I N                     |                 | 90°   | Α                         | Α    | PASS   | PASS |
| L, N, L-N                   |                 | 180°  | Α                         | Α    | PASS   | PASS |
|                             |                 | 270°  | A                         | Α    | PASS   | PASS |
|                             | 2.0             | 0°    | Α                         | Α    | PASS   | PASS |
| L DE ALDE                   |                 | 90°   | Α                         | Α    | PASS   | PASS |
| L-PE, N-PE                  |                 | 180°  | Α                         | Α    | PASS   | PASS |
|                             |                 | 270°  | Α                         | Α    | PASS   | PASS |
|                             | 2.0             | 0°    | Α                         | Α    | PASS   | PASS |
| TUDE                        |                 | 90°   | Α                         | Α    | PASS   | PASS |
| L-N-PE                      |                 | 180°  | Α                         | Α    | PASS   | PASS |
|                             |                 | 270°  | Α                         | Α    | PASS   | PASS |
| Analogue/digital data ports | 0.5             | +/-   | Α                         | Α    | PASS   | PASS |
| DC network power ports      | 0.5             | +/-   |                           |      | 1      | 10   |

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.



Report No.: TB-EMC172573 Page: 71 of 72

# **Attachment J--Conducted Immunity Test Data**

Temperature : 24.4 °C Humidity : 54%

Power supply : AC 230V/50Hz Test Mode : Mode 1

Required Performance Criteria: A

| Frequency<br>Range (MHz) |             |                                               | Required<br>Performance<br>Criteria | Actual<br>Performance<br>Criteria | Result |
|--------------------------|-------------|-----------------------------------------------|-------------------------------------|-----------------------------------|--------|
| 0.15 ~ 10                | B Em        | 3V(rms), AM 80%<br>Modulated with 1 kHz       | A                                   | A                                 | PASS   |
| 10 ~ 30                  | AC Mains    | 3V to 1V(rms), AM 80%<br>Modulated with 1 kHz | A                                   | A                                 | PASS   |
| 30 ~ 80                  | mobile .    | 1V(rms), AM 80%<br>Modulated with 1 kHz       | A                                   | A                                 | PASS   |
| 0.15 ~ 10                | THE STATE   | 3V(rms), AM 80%<br>Modulated with 1 kHz       | A                                   | 1                                 | July 1 |
| 10 ~ 30                  | DC Mains    | 3V to 1V(rms), AM 80%<br>Modulated with 1 kHz | A                                   | 1                                 | BY     |
| 30 ~ 80                  | MOB         | 1V(rms), AM 80%<br>Modulated with 1 kHz       | Α                                   |                                   |        |
| 0.15 ~ 10                |             | 3V(rms), AM 80%<br>Modulated with 1 kHz       | A                                   | А                                 | PASS   |
| 10 ~ 30                  | Signal Line | 3V to 1V(rms), AM 80%<br>Modulated with 1 kHz | A                                   | А                                 | PASS   |
| 30 ~ 80                  | 1000        | 1V(rms), AM 80%<br>Modulated with 1 kHz       | A                                   | Α                                 | PASS   |

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.



Report No.: TB-EMC172573 Page: 72 of 72

# **Attachment K--Voltage Dips and Interruptions Test Data**

Temperature : 24.4℃ Humidity : 54%

Power supply : AC 230V/50Hz Test Mode : Mode 1

Criterion: B&C

| Test Level<br>% UT | Voltage Dips &<br>Short<br>Interruptions<br>% UT | Duration<br>(in period) | Phase<br>Angle | Required<br>Performance<br>Criteria | Actual<br>Performance<br>Criteria | Result |
|--------------------|--------------------------------------------------|-------------------------|----------------|-------------------------------------|-----------------------------------|--------|
| 0                  | 100                                              | 250P                    | 0°             | С                                   | C                                 | Pass   |
| 70                 | 30                                               | 25P                     | 0°             | С                                   | С                                 | Pass   |
| 0                  | 100                                              | 0.5P                    | 0°             | В                                   | В                                 | Pass   |

Remark: U<sub>T</sub> is the rated voltage for the equipment.

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

----END OF REPORT----