

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

	TEST	REP	ORI	
--	------	-----	-----	--

Report No. CTC20210068E07

Applicant: XonTel Technology Trd. Co. W.L.L

Address.....: Kuwait City, Qibla, Aladel Tower, F21, state of Kuwait

Manufacturer...... XonTel Technology Trd. Co. W.L.L

Address...... Kuwait City, Qibla, Aladel Tower, F21, state of Kuwait

Product Name: IP Phone

Trade Mark: XonTel

Model/Type reference.....: XT-40G

Listed Model(s): N/A

Standard: ETSI EN 300 440 V2.2.1: 2018-07

Date of receipt of test sample...: Mar. 10, 2020

Date of testing...... Mar. 11, 2020 to Mar. 23, 2020

Date of issue...... Jan. 20, 2021

Result.....: PASS

Compiled by:

(Printed name+signature) Terry Su

Supervised by:

(Printed name+signature) Miller Ma

Approved by:

(Printed name+signature) Walter Chen

Testing Laboratory Name: CTC Laboratories, Inc.

High-Tech Park, Longhua District, Shenzhen, Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC. within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

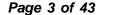


Table of Contents

Page

Report No.: CTC20210068E07

1.	TEST	T SUMMARY	3
	1.1.	TEST STANDARDS	3
	1.2.	REPORT VERSION	
	1.3.	TEST DESCRIPTION.	
	1.4.	TEST FACILITY	
	1.5.	Measurement Uncertainty	
	1.6.	ENVIRONMENTAL CONDITIONS	
2.	GEN	NERAL INFORMATION	
	2.1.	CLIENT INFORMATION	8
	2.2.	GENERAL DESCRIPTION OF EUT	
	2.3.	EUT OPERATION MODE	_
	2.4.	MEASUREMENT INSTRUMENTS LIST	
3.	TEST	T ITEM AND RESULTS	12
	3.1.	EQUIVALENT ISOTROPICALLY RADIATED POWER (E.I.R.P.)	12
	3.2.	PERMITTED RANGE OF OPERATING FREQUENCIES.	
	3.3.	UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	18
	3.4.	Transmitter unwanted emissions in the spurious domain-Radiated measurements	22
	3.5.	DUTY CYCLE	27
	3.6.	RECEIVER CATEGORY	29
	3.7.	ADJACENT CHANNEL SELECTIVITY	30
	3.8.	BLOCKING OR DESENSITIZATION	31
	3.9.	RECEIVER SPURIOUS RADIATION	34
	3.10.	RECEIVER SPURIOUS EMISSIONS-RADIATED MEASUREMENTS	36
	3.11.	SPECTRUM ACCESS TECHNIQUES	41
4.	EUT	TEST PHOTOS	42
5.	PHO	OTOGRAPHS OF EUT CONSTRUCTIONAL	ΔЗ

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

ETSI EN 300 440 V2.2.1: 2018-07 – Short Range Devices (SRD); Radio equipment to be used in the 1 GHz to 40 GHz frequency range; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU.

1.2. Report version

Revised No.	Date of issue	Description
01	Jan. 20, 2021	Original

Note: Update applicant, manufacturer, trademark and model name, This report is based on the report of CTC20200268E13.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

1.3. Test Description

Radio Spectrum Matter (RSM) Part of Transmitter							
Test Item	Test require	Result	Test Engineer				
Equivalent isotropic ally radiated power (e.i.r.p.)	Sub-clause 4.2.2	Pass	Ray Luo				
Permitted range of operating frequencies	Sub-clause 4.2.3	Pass	Ray Luo				
Unwanted emissions in the spurious domain	Sub-clause 4.2.4	Pass	Ray Luo				
Duty cycle	Sub-clause 4.2.5	N/A	N/A				
Additional requirements for FHSS equipment	Sub-clause 4.2.6	N/A	N/A				
Radio Spectrum	Matter (RSM) Part of Rece	eiver					
Test Item	Test require	Result	Test Engineer				
Adjacent channel selectivity	Sub-clause 4.3.3	Pass	Ray Luo				
Blocking or desensitization	Sub-clause 4.3.4	Pass	Ray Luo				
Receiver spurious emissions	Sub-clause 4.3.5	Pass	Ray Luo				
Spectrum access techniques	Sub-clause 4.4	Pass	Ray Luo				

Note:

- 1. The measurement uncertainty is not included in the test result.
- 2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.

Page 5 of 43 Report No.: CTC20210068E07

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accredit ation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of

electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of I ndustry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Maximum transmit power	±1.5dB	(1)
Power Spectral Density	±1.5dB	(1)
Duty Cycle, Tx-sequence, Tx-gap	±5%	(1)
Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	±5%	(1)
Hopping Frequency Separation	±5%	(1)
Medium Utilisation (MU) factor	±5%	(1)
Adaptively	±5%	(1)
Occupied Channel Bandwidth	±5%	(1)
Transmitter unwanted emissions in the out-of-band domain	±2.8dB	(1)
Transmitter unwanted emissions in the spurious domain	±2.8dB	(1)
Receiver spurious emissions	±2.8dB	(1)
Receiver Blocking	±2.8dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

	Temperat ure	15 °C to 35 °C			
Normal	Relative humidity	20 % to 75 %.			
Condition		⊠Mains voltage	Nominal mains voltage		
	Voltage	Lead-acid battery	1.1 * the nominal voltage of the battery		
	vollage	Other	The normal test voltage shall be that declared by the equipment provider		
			ge as declared by the manufacturer		
	Temperat	☐ Temperature categor	y I (General): -20 °C to +55 °C		
	ure	☐ Temperature categor	y II (Portable): -10 °C to +55 °C		
		☐ Temperature category III (Equipment for normal indoor use): 5 °C to +35 °C			
Extreme Condition	Voltage	☐Mains voltage	±10 %* the nominal mains voltage		
		Lead-acid battery	1,3 and 0,9 multiplied by the nominal voltage of the battery		
		Leclanché or the lithium battery	Lower extreme voltage: 0.85*the nominal voltage upper extreme voltage: The nominal voltage		
		□Nickel-cadmium battery	Lower extreme voltage: 0.9*the nominal voltage upper extreme voltage: The nominal voltage		
		⊠Other	The normal test voltage shall be that declared by the equipment provider		
			1.0.000/		
Normal C	a.a.diti.a.a	V _N =Normal Voltage	AC 230V		
Normal Condition		T _N =Normal Temperature	25 °C		
		V _L =Lower Voltage	AC 120V		
		T _L =Lower Temperature	-20 °C		
Extreme C	Condition	V _H =Higher Voltage	AC 240V		
		T _H =Higher Temperature	55 °C		

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	XonTel Technology Trd. Co. W.L.L
Address:	Kuwait City, Qibla, Aladel Tower, F21, state of Kuwait
Manufacturer:	XonTel Technology Trd. Co. W.L.L
Address:	Kuwait City, Qibla, Aladel Tower, F21, state of Kuwait

Report No.: CTC20210068E07

2.2. General Description of EUT

Product Name:	IP Phone						
Trade Mark:	XonTel						
Model/Type reference:	XT-40G						
Listed Model(s):	N/A						
Power supply:	5Vdc/2A from Supplied from		dapt	er			
Adapter 1 Model:	F12W8-05020 Input: AC100- Output:5V/2A	00SPAV -240V 50/	60Hz	2 0.3A			
Adapter 2 Model:	F12W8-050200SPAB Input: AC100-240V 50/60Hz 0.3A Output:5V/2A						
Hardware version:	N/A						
Software version:	N/A						
RF Specification							
Support type:	⊠ 802.11a		\boxtimes	802.11n		⊠ 802. ⁻	11ac
	802.11a		Hz				
Support bandwidth:	802.11n		Hz	⊠ 40MHz			
	802.11ac ⊠ 20MHz ⊠ 40MHz ⊠ 80MHz ☐ 160MHz					☐ 160MHz	
Operation frequency:	⊠Higher Band 5725MHz-5850MHz						
Modulation:	⊠BPSK ⊠QPSK ⊠16QAM ⊠64QAM						
Antenna type:	FPC Antenna						
Antenna gain:	2.3dBi						

Operation Frequency List:

	20MHz E	Bandwidth	40MHz Bandwidth		80MHz Bandwidth				
Band (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
	149	5745	151	151	151	151	5755		
	153	5765		5755	155	5775			
5725MHz-5850MHz	157	5785	159						
	161	5805		159	159	159	159 5	5795	95
	165	5825							

Test channel is below:

Dond/MUz)	Test Channel	Frequency				
Band(MHz)	rest Charmer	20MHz	40MHz	80MHz		
5725MHz-5850MHz	CH∟	5745	5755	-		
	CH _M	5785	-	5775		
	СНн	5825	5795	-		

Report No.: CTC20210068E07

2.3. EUT operation mode

Mode 1	The EUT has been tested under test mode condition. The Applicant provides software to control the EUT for staying in continuous transmitting and receiving mode for testing.
Mode 2	Normal communication for test channel

2.4. Measurement Instruments List

Tonso	Tonscend JS0806-2 Test system							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated until		
1	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 28, 2019	Dec. 27, 220		
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Mar. 16, 2020	Mar. 15, 2021		
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 28, 2019	Dec. 27, 220		
4	Signal Generator	Agilent	E8257D	MY46521908	Dec. 28, 2019	Dec. 27, 220		
5	Power Sensor	Agilent	U2021XA	MY5365004	Dec. 28, 2019	Dec. 27, 220		
6	Power Sensor	Agilent	U2021XA	MY5365006	Dec. 28, 2019	Dec. 27, 220		
7	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Dec. 28, 2019	Dec. 27, 220		
8	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 28, 2019	Dec. 27, 220		
9	Climate Chamber	ESPEC	MT3065	/	Dec. 28, 2019	Dec. 27, 220		
10	300328 v2.2.2 test system	TONSCEND	v2.6	/	/	/		

Trans	Transmitter spurious emissions & Receiver spurious emissions									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated until				
1	EMI Test Receiver	Rohde & Schwarz	ESCI	100658	Dec. 28, 2019	Dec. 27, 220				
2	High pass filter	micro-tranics	HPM50111	142	Dec. 28, 2019	Dec. 27, 220				
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 28, 2019	Dec. 27, 220				
4	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec. 28, 2019	Dec. 27, 220				

Page 11 of 43

5	Loop Antenna	LAPLAC	RF300	9138	Dec. 28, 2019	Dec. 27, 220
6	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 28, 2019	Dec. 27, 220
7	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Dec. 28, 2019	Dec. 27, 220
8	Pre-Amplifier	HP	8447D	1937A03050	Dec. 28, 2019	Dec. 27, 220
9	Pre-Amplifier	EMCI	EMC05183 5	980075	Dec. 28, 2019	Dec. 27, 220
10	Antenna Mast	UC	UC3000	N/A	N/A	N/A
11	Turn Table	UC	UC3000	N/A	N/A	N/A
12	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 28, 2019	Dec. 27, 220
13	Cable Above 1GHz	Hubersuhner	SUCOFLE X102	DA1580	Dec. 28, 2019	Dec. 27, 220

Report No.: CTC20210068E07

Note: The cable loss has calculated in test result which connection between each test instruments.

Page 12 of 43

Report No.: CTC20210068E07

3. TEST ITEM AND RESULTS

3.1. Equivalent isotropically radiated power (e.i.r.p.)

Limit

ETSI EN 300 440 Sub-clause 4.2.2.4

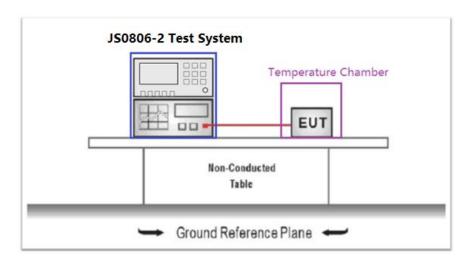
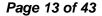

The transmitter maximum e.i.r.p. under normal and extreme test conditions is provided in table 2.

Table 2: Maximum radiated power (e.i.r.p.)

Entry	Frequency Bands	Power	Application	Notes
1	2 400 MHz to 2 483,5 MHz	10 mW e.i.r.p.	Non-specific short range	
			devices	
2	2 400 MHz to 2 483,5 MHz	25 mW e.i.r.p.	Radiodetermination devices	
3	(a) 2 446 MHz to 2 454 MHz	500 mW	Radio Frequency	See also table 4
		e.i.r.p.	Identification (RFID) devices	and Annex G
4	(b) 2 446 MHz to 2 454 MHz	4 W e.i.r.p.	Radio Frequency	See also table 4
			Identification (RFID) devices	and Annex G
5	5 725 MHz to 5 875 MHz	25 mW e.i.r.p.	Non-specific short range	
			devices	
6	9 200 MHz to 9 500 MHz	25 mW e.i.r.p.	Radiodetermination devices	
7	9 500 MHz to 9 975 MHz	25 mW e.i.r.p.	Radiodetermination devices	
8	10,5 GHz to 10,6 GHz	500 mW	Radiodetermination devices	
		e.i.r.p.		
9	13,4 GHz to 14,0 GHz	25 mW e.i.r.p.	Radiodetermination devices	
10	17,1 GHz to 17,3 GHz	400 mW	Radiodetermination devices	See Annex H
		e.i.r.p.		
11	24,00 GHz to 24,25 GHz	100 mW	Non-specific short range	
		e.i.r.p.	devices and	
NOTE.			radiodetermination devices	

NOTE: The spectrum ranges in some entries are not harmonised throughout all EU territory, specifically entries 4, 9, and 11 have been identified as such. Implementers are cautioned to refer to CEPT/ERC Recommendation 70-03 [i.2] as well as current National Radio plans to verify acceptance within intended regions of use.


Test Configuration

Test Procedure

Please refer to ETSI EN 300 440 Sub-clause 4.2.2.3.2 for the measurement method.

For anti-take verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Test Mode

Please reference to the section 2.3 mode 1.

Test Results

Туре	Bandwidth (MHz)	Channel	EIRP	Limit (dBm)	Result
		CH∟	12.10		
802.11a	20	CH _M	11.44	14.00	Pass
		СНн	11.45		
		CH∟	12.04		
	20	CH _M	11.93	14.00	Pass
802.11n		СНн	11.15		
	40	CH∟	11.14	14.00	Pass
		СНн	11.38	14.00	Pass
		CH∟	10.42		
	20	CH _M	10.37	14.00	Pass
000.44		СНн	9.61		
802.11ac	40	CH∟	9.31	14.00	Pass
	40	СНн	8.89	14.00	
	80	CHL	8.87	14.00	Pass

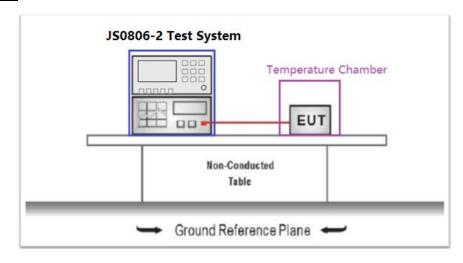
Page 14 of 43 Report No.: CTC20210068E07

3.2. Permitted range of operating frequencies

<u>Limit</u>

ETSI EN 300 440 Sub-clause 4.2.3.5

The width of the power spectrum envelope is f_H - f_L for a given operating frequency. In equipment that allows adjustment or selection of different operating frequencies, the power envelope takes up different positions in the allowed band. The frequency range is determined by the lowest value of f_L and the highest value of f_H resulting from the adjustment of the equipment to the lowest and highest operating frequencies.


The occupied bandwidth (i.e. the bandwidth in which 99 % of the wanted emission is contained) of the transmitter shall fall within the assigned frequency band.

For all equipment the frequency range shall lie within the frequency band given by clause 4.2.2.4, table 2. For non-harmonized frequency bands the available frequency range may differ between national administrations.

Frequency Bands	Power	Application	Notes
2 400 MHz to 2 483,5 MHz	10 mW e.i.r.p.	Non-specific short range devices	
2 400 MHz to 2 483,5 MHz	25 mW e.i.r.p.	Radio determination devices	
(a) 2 446 MHz to 2 454 MHz	500 mW e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
(b) 2 446 MHz to 2 454 MHz	4 W e.i.r.p.	Radio Frequency Identification (RFID) devices	See also table 4 and annex D
5 725 MHz to 5 875 MHz	25 mW e.i.r.p.	Non-specific short range devices	
9 200 MHz to 9 500 MHz	25 mW e.i.r.p.	Radio determination devices	
9 500 MHz to 9 975 MHz	25 mW e.i.r.p.	Radio determination devices	
10,5 GHz to 10,6 GHz	500 mW e.i.r.p.	Radio determination devices	
13,4 GHz to 14,0 GHz	25 mW e.i.r.p.	Radio determination devices	
17,1 GHz to 17,3 GHz	400 mW e.i.r.p.	Radio determination devices	See annex F
24,00 GHz to 24,25 GHz	100 mW e.i.r.p.	Non-specific short range devices	
		and	
		Radio determination devices	

Table 2: Maximum radiated peak power (e.i.r.p.)

Test Configuration

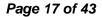
Test Procedure

Please refer to ETSI EN 300 440 Sub-clause 4.2.3.3 for the measurement method.

Test Mode

Please reference to the section 2.3 mode 1.

Test Results


Permitted range of operating frequencies

Mode		est itions	Channel	f∟ (MHz)	f _H (MHz)	Limit	Result
	Temp	Vol		- (,	,		
	_	\ /	CH∟	5745.12	-		
	T _N	V_N	СНн	-	5825.10		
		\ /	CH∟	5744.96	-	_	
	_	V_L	СНн	-	5824.99		
000 44 6	T∟	M	CH∟	5745.02	-	f∟≥5.725GHz	Door
802.11a		V _H	СНн	-	5825.03	- and f _H ≤5.850GHz	Pass
		\/	CH∟	5745.03	-		
	_	V_L	СНн	-	5825.02		
	Тн	V.	CH∟	5744.99	-		
		V _H	СНн	-	5825.00		
	T _N	V_N	CH∟	5744.89	-		
		۷N	CH _H	-	5825.11		
	T∟	V_L	CH∟	5744.86	-		
		V L	СНн	-	5825.12		Pass
802.11n		V	CH∟	5745.02	-	f∟≥5.725GHz and	
20MHz		V _H	CH _H	-	5824.96	f _H ≤5.850GHz	
		V	CH∟	5745.03	-		
	т	V_L	СНн	-	5824.99		
	Тн	V	CH∟	5745.00	-		
		V _H	СНн	-	5825.03		
	_	V	CH∟	5745.01	-		
	T _N	V_N	CH _H	-	5825.62		
		VL	CH∟	5745.00	-		
802.11ac	т.	۷L	СНн	-	5825.44	f∟≥5.725GHz and	Pass
20MHz	TL	V	CH∟	5745.04	-	f _H ≤5.850GHz	F 455
		V _H	СНн	-	5824.86		
	T	\/.	CH∟	5744.68	-		
	Тн	V _L	СНн	-	5825.11		

Page 16 of 43 Report No.: CTC20210068E07

		V _H	CH∟	5744.87	-									
		VH	СНн	-	5824.78									
	_	.,	CH∟	5754.88	-									
	T _N	V _N	СНн	-	5795.02									
			CH∟	5755.12	-									
	_	V _L	СНн	-	5794.89									
802.11n	T∟		CH∟	5755.03	-	f∟≥5.725GHz	Dana							
40MHz		V _H	СНн	-	5794.85	and f _H ≤5.850GHz	Pass							
			CH∟	5755.06	-									
		V_L	СНн	-	5795.13									
	Тн		CH∟	5754.86	-									
		V _H	СНн	-	5795.02									
	T _N	\/	CH∟	5755.11	-									
		V _N	СНн	-	5794.95		Door							
	TL	V.	CH∟	5755.10	-									
		V _L	СНн	-	5795.32									
802.11ac			CH∟	5755.03	-	f∟≥5.725GHz								
40MHz		V _H	СНн	-	5795.16	and f _H ≤5.850GHz	Pass							
									W	CH∟	5754.87	-		
	_	V _L	СНн	-	5794.86									
	T _H	\/	CH∟	5754.96	-									
		V _H	СНн	-	5794.79									
	T _N	V _N	CH∟	5775.12	-									
802.11ac	т	V_L	CH∟	5775.13	-	f _L ≥5.725GHz								
	T∟	V _H	CH∟	5775.06	-	and	Pass							
80MHz	т	V_L	CH∟	5775.11	-	f _H ≤5.850GHz								
	T _H	V _H	CH∟	5774.96	-									

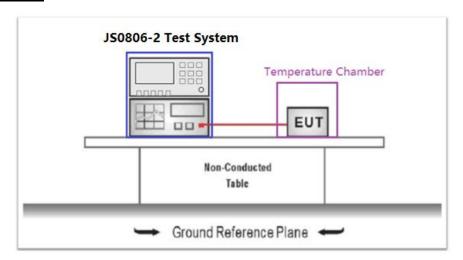
99% Occupied bandwidth

99 / Occupie	o banan iat	· · · · · · · · · · · · · · · · · · ·				
Mode	Channel	Occupied bandwidth (MHz)	f _L (MHz)	f _H (MHz)	Limit	Result
000 44 a	CH∟	16.413	5736.7560	5753.1690	f _L ≥5.725GHz	Dees
802.11a	СНн	16.453	5816.7360	5833.1890	and f _H ≤5.850GHz	Pass
802.11n	CH∟	17.668	5736.1311	5753.7989	f∟≥5.725GHz	D
20MHz	СНн	17.703	5816.1211	5833.8239	and f _H ≤5.850GHz	Pass
802.11ac	CH∟	17.683	5736.1211	5753.8039	f∟≥5.725GHz	D
20MHz	СНн	17.688	5816.1211	5833.8089	and f _H ≤5.850GHz	Pass
802.11n	CH∟	36.225	5736.8523	5773.0777	f∟≥5.725GHz	D
40MHz	СНн	36.265	5776.8423	5813.1077	and f _H ≤5.850GHz	Pass
802.11ac	CH∟	36.395	5736.7623	5773.1577	f∟≥5.725GHz	D
40MHz	СНн	36.405	5776.7623	5813.1677	and f _H ≤5.850GHz	Pass
802.11ac	CH	00.000	5700 0050	5040 7445	f∟≥5.725GHz	Door
80MHz	CH∟	86.329	5732.3853	5818.7145	and f _H ≤5.850GHz	Pass

Page 18 of 43

Report No.: CTC20210068E07

3.3. Unwanted emissions in the spurious domain


Limit

ETSI EN 300 440 Sub-clause 4.2.4.4

The maximum power limits of any unwanted emissions in the spurious domain are given in the below table

State	47MHz to 74MHz 87.5 to 118MHz 174MHz to 230MHz 470MHz to 862MHz	Other frequencies ≤ 1000MHz	Frequencies > 1000MHz	
Operating	4nW / -54dBm	250nW / -36dBm	1μW / -30dBm	
Standby	2nW / -57dBm	2nW / -57dBm	20nW / -47dBm	

Test Configuration

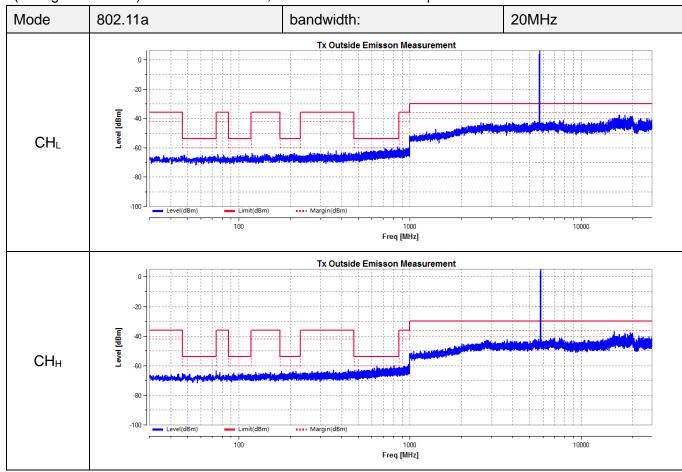
Test Procedure

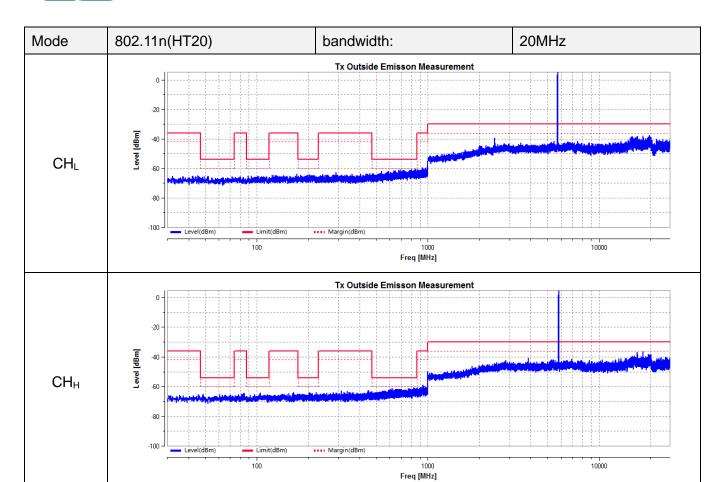
Please refer to ETSI EN 300 440 Sub-clause 4.2.4.3.1 for the measurement method.

Test Mode

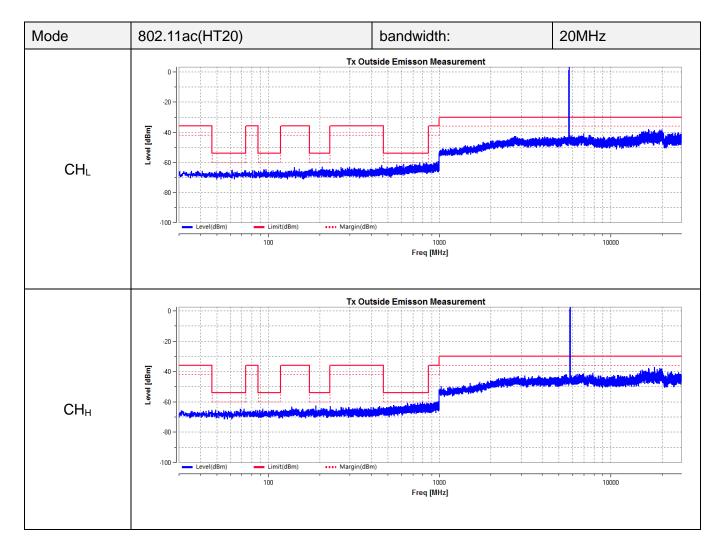
Please reference to the section 2.3 mode 1.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: http://yz.cnca.cn


Test Result


Note: 1. Pre-scan all of 802.11a, 802.11n (HT20), 802.11n (HT40), 802.11ac (HT20), 802.11ac (HT40), 802.11ac (HT80) mode, and found the 20MHz mode which were the worst case, so only show the test data for worst case.

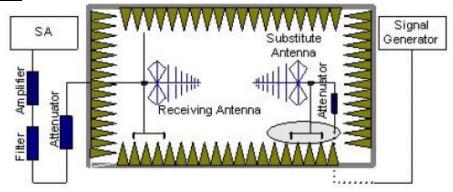
Report No.: CTC20210068E07

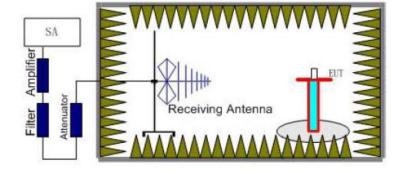

- 2. The signal which over the limit is the main wave signal.
- 3. 12.75GHz ~ 40GHz (10 times the carrier frequency)

The EUT was pre-scanned the frequency band (12.75GHz~40GHz), found the radiated level (Background noise) lower than the limit, so don't show on the report.

3.4. Transmitter unwanted emissions in the spurious domain-Radiated measurements

Report No.: CTC20210068E07


Limit


ETSI EN 300 440 Sub-clause 4.2.4.4

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in the below table

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

Test Configuration

Test Procedure

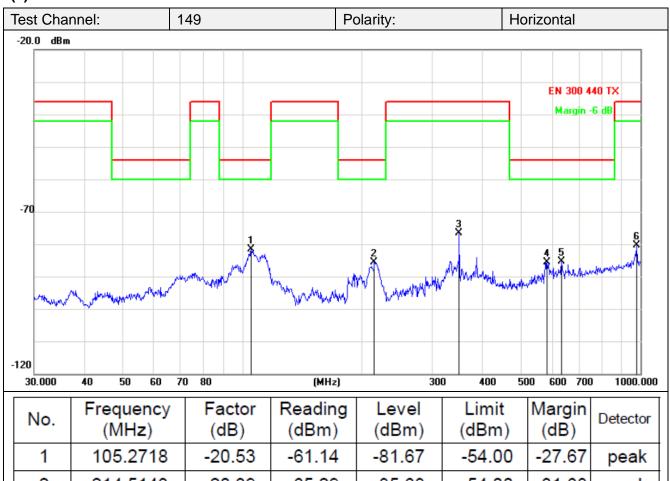
Please refer to ETSI EN 301 893 Sub-clause 5.4.5.2.1 for the measurement method.

Test Mode

Continuous transmitting.

Test Result

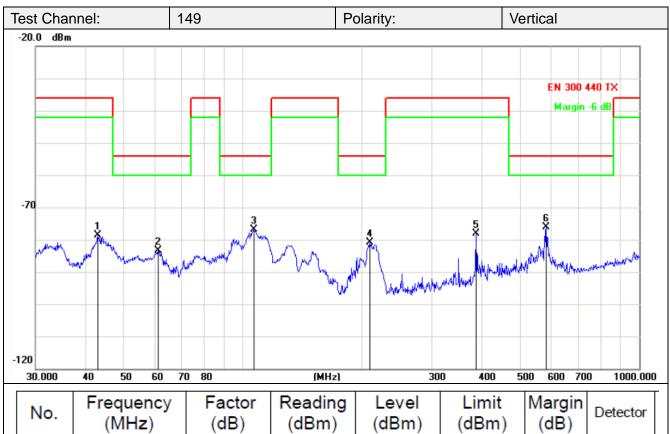
Note:


- 1. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- 2. Pre-scan all bandwidth found the 20MHz CH100 which it is worse case, so only show the test data for worse case.
- 3. 12.75GHz ~ 40GHz(10 times the carrier frequency)

The EUT was pre-scanned the frequency band (12.75GHz~40GHz), found the radiated level (Background noise) lower than the limit, so don't show on the report.

Report No.: CTC20210068E07

(1) Below 1G

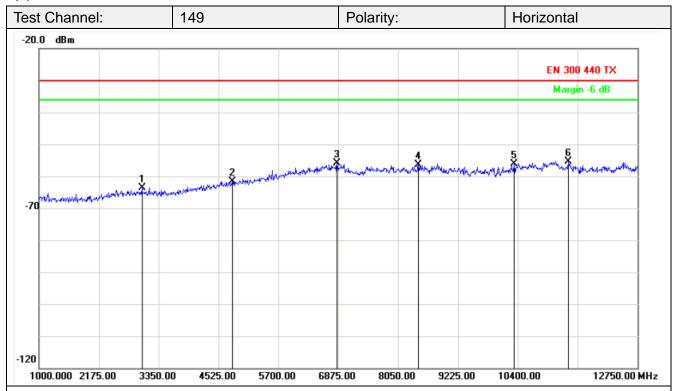

No.	Frequency (MHz)	Factor (dB)	Reading (dBm)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
1	105.2718	-20.53	-61.14	-81.67	-54.00	-27.67	peak
2	214.5143	-20.39	-65.29	-85.68	-54.00	-31.68	peak
3	350.4768	-16.71	-59.92	-76.63	-36.00	-40.63	peak
4	582.7425	-12.53	-73.19	-85.72	-54.00	-31.72	peak
5	633.9073	-11.71	-73.72	-85.43	-54.00	-31.43	peak
6	979.1804	-7.06	-73.36	-80.42	-36.00	-44.42	peak

Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Factor (dB)	Reading (dBm)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
1	43.0505	-17.52	-61.15	-78.67	-36.00	-42.67	peak
2	61.1316	-18.72	-64.60	-83.32	-54.00	-29.32	peak
3	106.7587	-20.41	-56.40	-76.81	-54.00	-22.81	peak
4	209.3129	-20.57	-60.38	-80.95	-54.00	-26.95	peak
5	387.9920	-16.02	-62.06	-78.08	-36.00	-42.08	peak
6	582.7425	-12.53	-63.47	-76.00	-54.00	-22.00	peak


Remarks:

^{1.}Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

^{2.}Margin value = Level -Limit value

(2) Above 1G

No.	Frequency (MHz)	Factor (dB)	Reading (dBm)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
1	3021.000	-6.53	-56.98	-63.51	-30.00	-33.51	peak
2	4795.250	-2.85	-58.77	-61.62	-30.00	-31.62	peak
3	6851.500	2.85	-58.74	-55.89	-30.00	-25.89	peak
4	8449.500	4.55	-60.91	-56.36	-30.00	-26.36	peak
5	10329.500	6.55	-62.73	-56.18	-30.00	-26.18	peak
6	11387.000	7.57	-62.98	-55.41	-30.00	-25.41	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

149 Test Channel: Polarity: Vertical -20.0 dBm EN 300 440 TX Margin -6 dB -120 1000.000 2175.00 5700.00 10400.00 12750.00 MHz 3350.00 8050.00 9225.00 4525.00 6875.00

No.	Frequency (MHz)	Factor (dB)	Reading (dBm)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
1	2797.750	-6.96	-57.29	-64.25	-30.00	-34.25	peak
2	4877.500	-2.60	-59.06	-61.66	-30.00	-31.66	peak
3	5993.750	0.82	-59.50	-58.68	-30.00	-28.68	peak
4	6945.500	3.01	-58.81	-55.80	-30.00	-25.80	peak
5	8144.000	4.63	-60.80	-56.17	-30.00	-26.17	peak
6	11058.000	7.99	-62.37	-54.38	-30.00	-24.38	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3.5. Duty Cycle

Limit

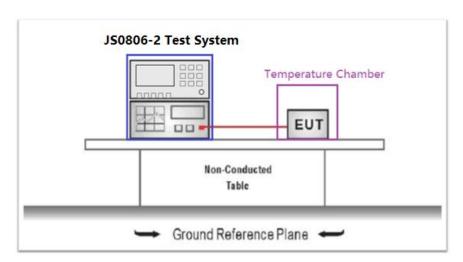

ETSI EN 300 440 Sub-clause 4.2.5.4

Table 4 defines the maximum duty cycle within a 1 hour period.

Table 4: Duty cycle limits

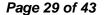
Frequency Band	Duty cycle	Application	Notes
2 400 MHz to 2 483,5 MHz	No Restriction	Generic use	
2 400 MHz to 2 483,5 MHz	No Restriction	Detection, movement and alert	
		applications	
(a) 2 446 MHz to 2 454 MHz	No Restriction	RFID	Limits shown in
			annex D shall apply
(b) 2 446 MHz to 2 454 MHz	≤ 15 %	RFID	Limits shown in
			annex D shall apply
5 725 MHz to 5 875 MHz	No Restriction	Generic use	
9 200 MHz to 9 500 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
9 500 MHz to 9 975 MHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
10,5 GHz to 10,6 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
13,4 GHz to 14,0 GHz	No Restriction	Radiodetermination:	
		radar, detection, movement and	
		alert applications	
17,1 GHz to 17,3 GHz	DAA or	Radiodetermination:	Limits shown in
	equivalent	GBSAR detecting and movement	annex F shall apply
	techniques	and alert applications	
24,00 GHz to 24,25 GHz	No Restriction	Generic use and for	
		Radiodetermination:	
		radar, detection, movement and	
		alert applications	

Test Configuration

Test Procedure

Please refer to ETSI EN 300 440 Sub-clause 4.2.5.3 for the measurement method.

Test Mode


Please reference to the section 2.3 mode 1.

⊠ Not Applicable

CTC Laboratories, Inc.

3.6. Receiver category

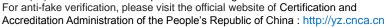

The product family of short range radio devices is divided into three receiver categories, see table 5, each having a set of relevant receiver requirements and minimum performance criteria. The set of receiver requirements depends on the choice of receiver category by the equipment manufacturer.

Table 5: Receiver categories

Report No.: CTC20210068E07

Receiver category	Relevant receiver clauses	Risk assessment of receiver performance
1		Highly reliable SRD communication media; e.g. serving human life inherent systems (may result in a physical risk to a person).
2	4.3.4 and 4.3.5	Medium reliable SRD communication media e.g. causing inconvenience to persons, which cannot simply be overcome by other means.
3	4.3.5	Standard reliable SRD communication media e.g. Inconvenience to persons, which can simply be overcome by other means (e.g. manual).

The product is belong to receiver category 2 by the manufacturer declare.

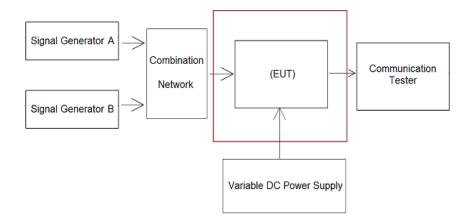
Page 30 of 43

Report No.: CTC20210068E07

3.7. Adjacent channel selectivity

Limit

ETSI EN 300 440 Sub-clause 4.3.3.4


The adjacent channel selectivity of the equipment under specified conditions shall not be less than -30 dBm + k.

Receiver category	Limit
1	≥-30dBm + k
2	No Limit
3	No Limit

The correction factor, k, is as follows: $k = -20\log f - 10\log BW$ Where:

- f is the frequency in GHz;
- BW is the channel bandwidth in MHz.

Test Configuration

Test Procedure

Please refer to ETSI EN 300 440 Sub-clause 4.3.3.3 for the measurement method.

Test Mode

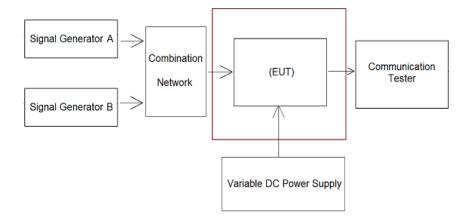
Please reference to the section 2.3 mode 2.

Test Result

3.8. Blocking or desensitization

Limit

ETSI EN 300 440 Sub-clause 4.3.4.4


The blocking level, for any frequency within the specified ranges, shall not be less than the values given in table, except at frequencies on which spurious responses are found.

Receiver category	Limit
1	≥-30 dBm+k
2	≥-45 dBm+k
3	No Limit

The correction factor, k, is as follows: $k = -20l_{og} f - 10l_{og}BW$ Where:

- f is the frequency in GHz;
- BW is the channel bandwidth in MHz.

Test Configuration

Test Procedure

Please refer to ETSI EN 300 440 Sub-clause 4.3.4.3 for the measurement method.

Test Mode

Please reference to the section 2.3 mode 2.

Test Result

Туре	Bandwidth (MHz)	Test Frequency (GHz)	K (correction factor)	Blocking Frequency(MHz)	Blocking Level(dBm)	Limit (dB)	Result
				6745	-15.61		
				6145	-25.36	-58.20	
		011	00.00	5945	-34.26		
		CH∟	-28.20	5545	-26.35		
				5345	-24.44		
				4745	-12.63		
				6785	-11.62		
				6185	-27.21		
000 44 -	00	011	00.00	5985	-17.15	50.00	D
802.11a	20	CH _M	-28.26	5585	-37.65	-58.26	Pass
				5385	-21.63		
				4785	-13.62		
				6825	-14.26		
				6225	-19.62	-58.32	
		CLI	20.22	6025	-25.62		
		CH _H	-28.32	5625	-27.25		
				5425	-27.62		
				4825	-15.62		
	20	CH∟	-28.20	6745	-14.12	-58.20	
				6145	-19.63		Pass
				5945	-24.15		
				5545	-29.63		
				5345	-14.58		
				4745	-25.62		
		20 CH _M	-28.26	6785	-21.48	-58.26	
				6185	-19.63		
				5985	-24.15		
				5585	-29.62		
				5385	-25.15		
000 115				4785	-10.26		
802.11n				6825	-11.63		
				6225	-15.15		
		CH	20.22	6025	-36.21	E0 22	
		CH _H	-28.32	5625	-31.02	-58.32	
				5425	-19.62		
				4825	-10.25		
				7755	-14.62		
				6555	-15.62	-61.22	
	40	CLI	24.00	6155	-11.52		Doss
	40	CH∟	-31.22	5355	-37.34		Pass
				4955	-17.36		
				3755	-18.26		

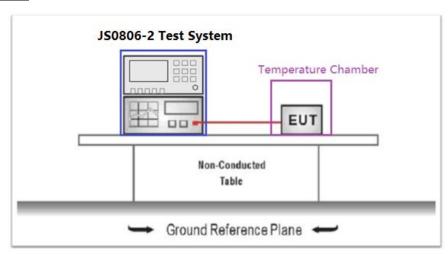
CD	Page 33 of 43	Report No.: CTC20210068E07

		1	1	l	1 40.00	1	
				7795	-10.36	-	
				6595	-12.16		
,		СНн	-31.28	6195	-22.63	-61.28	
ı				5395	-14.26		
				4995	-16.96		
				3795	-10.16		
				6745	-16.26		
				6145	-16.36		
		CH∟	-28.20	5945	-27.25	-58.20	
		Olic	-20.20	5545	-26.65	-50.20	
				5345	-17.15		
				4745	-31.02		
				6785	-11.26		
				6185	-11.63]	
	20	CII	20.20	5985	-15.26	50.00	Pass
	20	CH _M	-28.26	5585	-21.63	-58.26	
				5385	-14.62	-58.32	
				4785	-10.26		
		СНн	-28.32	6825	-12.63		
				6225	-14.26		
				6025	-25.63		
				5625	-31.25		
				5425	-16.26		
000.44				4825	-12.63		
802.11ac		CH∟	-31.22	7755	-13.26	-61.22	
				6555	-14.96		
				6155	-26.21		
				5355	-26.47		
				4955	-19.63		
				3755	-11.47		
	40		1	7795	-17.96		Pass
				6595	-26.23	1	
				6195	-22.36	1	
		СНн	-31.28	5395	-15.23	-61.28	
				4995	-19.62	1	
				3795	-15.63		
				9775	-25.63		
				7375	-26.47	1	
				6575	-24.96	1	
	80	CH∟	34.26	4975	-25.15	-64.26	Pass
				4175	-14.12		
				1775	-12.96		
Toot Cianal	Compressor	70 05 dD	The Denduid	th declared by the i		L	

Test Signal Generator A= -76.65dBm; The Bandwidth declared by the manufacturer.

Page 34 of 43

Report No.: CTC20210068E07


3.9. Receiver spurious radiation

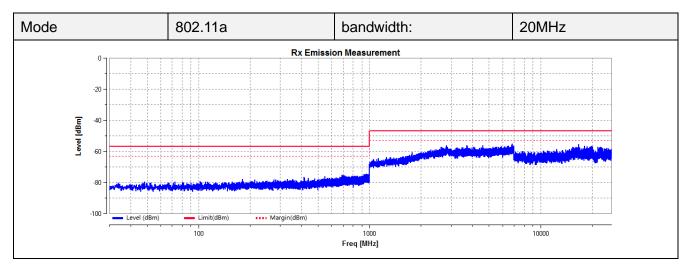
LIMIT

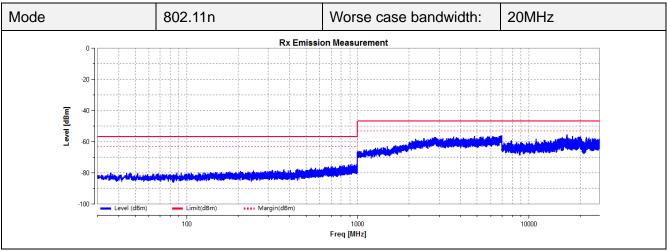
ETSI EN 300 440 Sub-clause 4.3.5.4

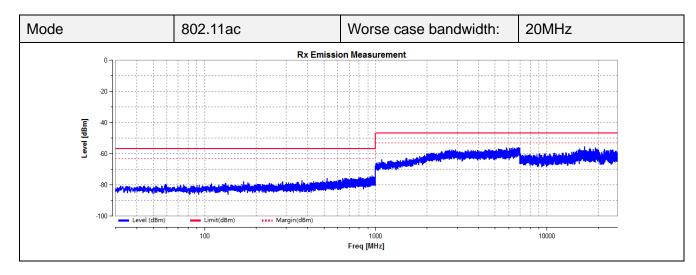
Frequency range	Level
25MHz to 1000MHz	2 nW / -57dBm
Above 1000MHz	20 nW / -47dBm

Test Configuration

Test Procedure


Please refer to ETSI EN 300 440 Sub-clause 4.3.5.3.1 for the measurement method.

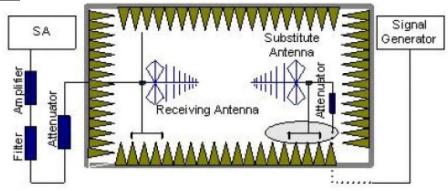

Test Mode

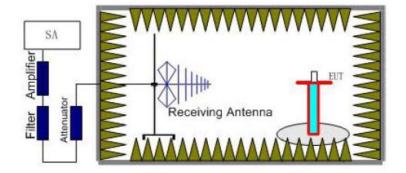

Please reference to the section 2.3 mode 1.

Test Result

Note: Pre-scan all of 802.11a, 802.11n (HT20), 802.11n(HT40), 802.11ac(HT20), 802.11ac(HT40), 802.11ac (HT80) mode, and found the 20MHz mode which were the worst case, so only show the test data for worst case.

3.10. Receiver spurious emissions-Radiated measurements


Limit


ETSI EN 300 440 Sub-clause 4.3.5.4

The spurious emissions of the receiver shall not exceed the values given in the below table

Frequency range	Maximum power	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

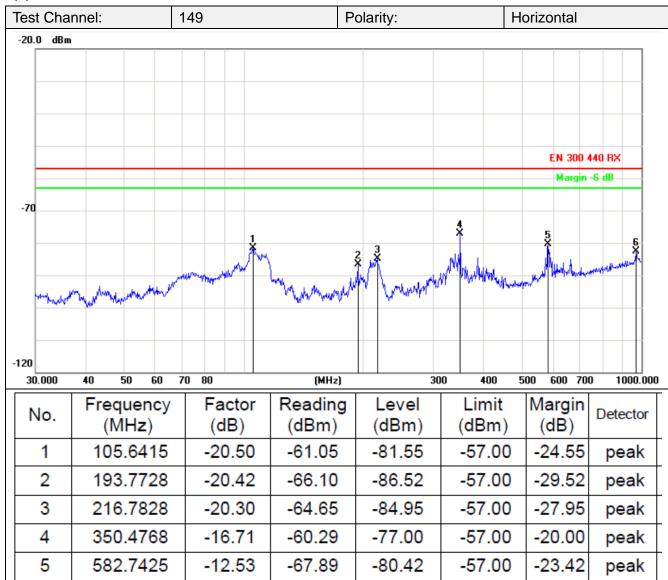
Test Configuration

Test Procedure

Please refer to ETSI EN 301 893 Sub-clause 5.4.6.2.1 for the measurement method.

Test Mode

Continuous receiving.


Test Result

Note:

- 1. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- 2. Pre-scan all bandwidth found the 20MHz CH100 which it is worse case, so only show the test data for worse case.
- 3. 18GHz ~ 26GHz(5 times the carrier frequency)
 The EUT was pre-scanned the frequency band (18GHz~26GHz), found the radiated level (Background noise) lower than the limit, so don't show on the report.

(1) Below 1G

Remarks:

6

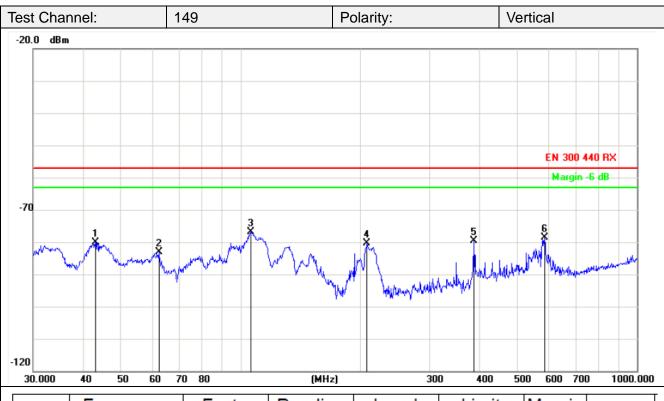
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

-75.43

-82.64

-57.00

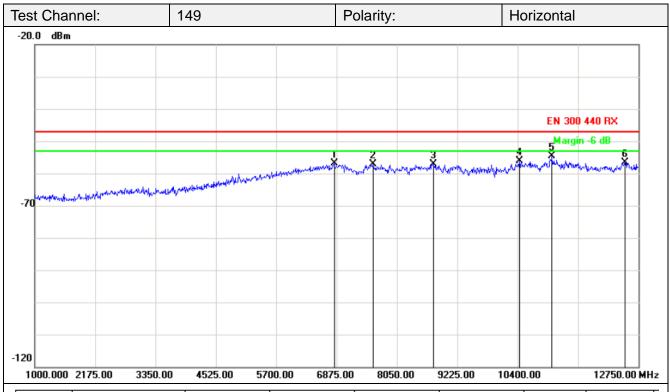
-25.64


peak

-7.21

2.Margin value = Level -Limit value

968,9338


No.	Frequency (MHz)	Factor (dB)	Reading (dBm)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
1	43.0505	-17.52	-62.51	-80.03	-57.00	-23.03	peak
2	62.2128	-18.93	-64.20	-83.13	-57.00	-26.13	peak
3	106.0126	-20.47	-56.43	-76.90	-57.00	-19.90	peak
4	208.5803	-20.59	-59.83	-80.42	-57.00	-23.42	peak
5	387.9920	-16.02	-63.59	-79.61	-57.00	-22.61	peak
6	584.7895	-12.50	-66.22	-78.72	-57.00	-21.72	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

(2) Above 1G

No.	Frequency (MHz)	Factor (dB)	Reading (dBm)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
1	6828.000	2.82	-59.61	-56.79	-47.00	-9.79	peak
2	7580.000	3.90	-61.10	-57.20	-47.00	-10.20	peak
3	8755.000	4.79	-61.82	-57.03	-47.00	-10.03	peak
4	10435.250	6.86	-62.92	-56.06	-47.00	-9.06	peak
5	11069.750	7.98	-62.52	-54.54	-47.00	-7.54	peak
6	12491.500	7.67	-64.25	-56.58	-47.00	-9.58	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Test Channel: 149 Polarity: Vertical

20.0 dBm

EN 300 440 RX

Margin - 5 dB

70

No.	Frequency (MHz)	Factor (dB)	Reading (dBm)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector
1	6005.500	0.85	-58.45	-57.60	-47.00	-10.60	peak
2	6957.250	3.04	-58.88	-55.84	-47.00	-8.84	peak
3	8731.500	4.77	-61.30	-56.53	-47.00	-9.53	peak
4	9624.500	5.45	-62.35	-56.90	-47.00	-9.90	peak
5	11116.750	7.92	-62.34	-54.42	-47.00	-7.42	peak
6	12456.250	7.63	-63.11	-55.48	-47.00	-8.48	peak

6875.00

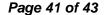
8050.00

9225.00

10400.00

12750.00 MHz

Remarks:

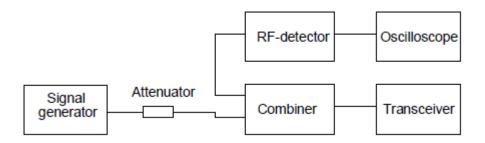

1000.000 2175.00

3350.00

4525.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5700.00



3.11. Spectrum access techniques

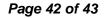
Limit

Shall be declared in the test report by the equipment provider.

Test Configuration

Test Procedure

Please refer to ETSI EN 300 440 Sub-clause 4.4.2.2.2 for the measurement method.


Test Mode

Please reference to the section 2.3 mode 1.

Test Result

The product is belong to Spectrum access techniques by the manufacturer declare.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

4. EUT TEST PHOTOS

Reference to the test report No.: CTC20210068E03.

5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Reference to the test report No.: CTC20210068E02.