

CE RF Test Report

Project No. : 2403G103

Equipment: Smart Video Phone

Brand Name : XONTEL
Test Model : XT-50G
Series Model : N/A

Applicant : XonTel Technology Trd. Co. W.L.L

Address : Office 21 - Justice Tower - Ali Al Salem St. - Qibla - Kuwait City - State

Of Kuwait

Manufacturer : XonTel Technology Trd. Co. W.L.L

Address : Office 21 - Justice Tower - Ali Al Salem St. - Qibla - Kuwait City - State

Of Kuwait

Date of Receipt : Aug. 13, 2021

Date of Test : Aug. 17, 2021 ~ Dec. 27, 2021

Issued Date : May 06, 2024

Report Version : R00

Test Sample : Engineering Sample No.: DG20210816158 for conducted,

DG20210816159 for radiated.

Standard(s) : ETSI EN 300 328 V2.2.2 (2019-07)

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.(Dongguan).

Prepared by

Sheldon Ou

Approved by

Ethan Ma

No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong, China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_ga@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

The report must not be used by the client to claim product certification, approval, or endorsement by CNAS.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1. RF EMISSIONS MEASUREMENT	7
1.1 TEST FACILITY	7
1.2 MEASUREMENT UNCERTAINTY	7
1.3 TEST ENVIRONMENT CONDITIONS	7
1.4 TEST CHANNEL	7
1.5 TEST METHODOLOGY AND RESULT	8
2. GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT	9
2.2 DESCRIPTION OF TEST MODES	11
2.3 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	12
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13
2.5 DESCRIPTION OF SUPPORT UNITS	13
3 . RF OUTPUT POWER	14
3.1 APPLIED PROCEDURES / LIMIT	14
3.2 TEST PROCEDURES	14
3.3 TEST SETUP LAYOUT 3.4 TEST DEVIATION	14 14
3.5 EUT OPERATION DURING TEST	14
3.6 TEST RESULTS	14
4 . DUTY CYCLE, TX-SEQUENCE, TX-GAP	15
4.1 APPLIED PROCEDURES / LIMIT	15
4.2 TEST PROCEDURES	15
4.3 TEST SETUP LAYOUT	15
4.4 TEST DEVIATION	15
4.5 EUT OPERATION DURING TEST	15
4.6 TEST RESULTS	15
5. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOP	PING
SEQUENCE	16
5.1 APPLIED PROCEDURES / LIMIT	16
5.2 TEST PROCEDURES	17
5.3 TEST SETUP LAYOUT	17
5.4 TEST DEVIATION	17
5.5 EUT OPERATION DURING TEST 5.6 TEST RESULTS	17 47
	17
6 . HOPPING FREQUENCY SEPARATION	18
6.1 APPLIED PROCEDURES / LIMIT	18
6.2 TEST PROCEDURES 6.3 TEST SETUP LAYOUT	18 18
6.4 TEST DEVIATION	18
6.5 EUT OPERATION DURING TEST	18
: 0	

Table of Contents	Page
6.6 TEST RESULTS	18
7. MEDIUM UTILIZATION (MU) FACTOR	19
7.1 APPLIED PROCEDURES / LIMIT	19
7.2 TEST PROCEDURES	19
7.3 TEST SETUP LAYOUT	19
7.4 TEST DEVIATION	19
7.5 EUT OPERATION DURING TEST	19
7.6 TEST RESULTS	19
8 . ADAPTIVITY (ADAPTIVE FREQUENCY HOPPING)	20
8.1 APPLIED PROCEDURES / LIMIT	20
8.2 TEST PROCEDURES	22
8.3 TEST SETUP LAYOUT	22
8.4 TEST DEVIATION	23
8.5 EUT OPERATION DURING TEST	23
8.6 TEST RESULTS	23
9. OCCUPIED CHANNEL BANDWIDTH	24
9.1 APPLIED PROCEDURES / LIMIT	24
9.2 TEST PROCEDURES	24
9.3 TEST SETUP LAYOUT	24
9.4 TEST DEVIATION	24
9.5 EUT OPERATION DURING TEST	24
9.6 TEST RESULTS	24
10. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	25
10.1 APPLIED PROCEDURES / LIMIT	25
10.2 TEST PROCEDURES	25
10.3 TEST SETUP LAYOUT	25
10.4 TEST DEVIATION	25
10.5 EUT OPERATION DURING TEST	25
10.6 TEST RESULTS	25
11 . TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	26
11.1 APPLIED PROCEDURES / LIMIT	26
11.2 TEST PROCEDURES	26
11.3 TEST SETUP LAYOUT	27
11.4 TEST DEVIATION	27
11.5 EUT OPERATION DURING TEST	27
11.6 TEST RESULTS	27
12 . RECEIVER SPURIOUS EMISSIONS	28
12.1 APPLIED PROCEDURES / LIMIT	28
12.2 TEST PROCEDURES	28
12.3 TEST SETUP LAYOUT	28
12.4 TEST DEVIATION	28
12.5 EUT OPERATION DURING TEST	28
12.6 TEST RESULTS	28

Table of Contents Pa	age
13 . RECEIVER BLOCKING	29
13.1 APPLIED PROCEDURES / LIMIT	29
13.2 TEST PROCEDURES	30
13.3 TEST SETUP LAYOUT	31
13.4 TEST DEVIATION	31
13.5 EUT OPERATION DURING TEST	31
13.6 TEST RESULTS	31
14 . MEASUREMENT INSTRUMENTS LIST	32
15 . EUT TEST PHOTO	34
APPENDIX A - RF OUTPUT POWER	35
APPENDIX B - DUTY CYCLE, TX-SEQUENCE, TX-GAP	37
APPENDIX C - ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING	
SEQUENCE	38
APPENDIX D - HOPPING FREQUENCY SEPARATION	49
APPENDIX E - MEDIUM UTILIZATION (MU) FACTOR	52
APPENDIX F - ADAPTIVITY	53
APPENDIX G - OCCUPIED CHANNEL BANDWIDTH	54
APPENDIX H - TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	57
APPENDIX I - TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	60
APPENDIX J - RECEIVER SPURIOUS EMISSIONS	73
APPENDIX K- RECEIVER BLOCKING	82
APPENDIX L- INFORMATION AS REQUIRED BY EN 300 328 V2.2.2, CLAUSE 5.4.1	84

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-ETSP-1-2403G103	R00	This is a copy report which referencing test data are provided from test report (BTL-ETSP-1-2108C114). The device is identical to the original one recorded in the referencing report. 1. The brand name, model name, applicant and manufacturer information are changed. 2. Removed the factory information. Based on above described change which does not affect the test results. Other are kept the same.	May 06, 2024	Valid

Remark: For the original report (BTL-ETSP-1-2108C114), the test data, data evaluation, and equipment configuration contained was accredited by the Authority of A2LA according to the ISO/IEC 17025 quality assessment standard and technical standard(s).

1. RF EMISSIONS MEASUREMENT

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-CB15/TR17** at the location of No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong, China.

1.2 MEASUREMENT UNCERTAINTY

The measurement uncertainty figures shall be calculated according the methods described in the ETSI TR 100 028 and shall correspond to an expansion factor (coverage factor) k=1.96 or k=2(which provide confidence levels of respectively 95% and 95.45% in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Measurement Uncertainty for a Level of Confidence of 95.45%, $U=2\times u_c(y)$.

The BTL measurement uncertainty as below table:

Parameter	Uncertainty
Output Power	±0.95 dB
Occupied Channel Bandwidth	±3.8 %
Power Spectral Density	±0.86 dB
Conducted Spurious Emission	±2.71 dB
Spurious Emissions, Radiated f ≤ 1GHz	±3.50 dB
Spurious Emissions, Radiated 1GHz < f ≤ 12.75GHz	±3.54 dB
Temperature	±0.08 °C
Time	±0.58 %
Supply voltages	±0.3 %

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
RF Output Power	Normal & Extreme	51%	DC 12V	Mark Wu
Accumulated Transmit time, Frequency Occupation & Hopping Sequence	22.4°C	51%	DC 12V	Mark Wu
Hopping Frequency Separation	22.4°C	51%	DC 12V	Mark Wu
Occupied Channel Bandwidth	22.4°C	51%	DC 12V	Mark Wu
Transmitter unwanted emissions in the OOB domain	22.4°C	51%	DC 12V	Mark Wu
Transmitter unwanted emissions in the spurious domain	23°C	35%-44%	AC 230V/50Hz	Andrew Jiang
Receiver spurious emissions	23°C	44%	AC 230V/50Hz	Andrew Jiang
Receiver Blocking	22.4°C	51%	DC 12V	Mark Wu

1.4 TEST CHANNEL

Test Channel	EUT Channel	Test Frequency
low	CH00	2402 MHz
middle	CH39	2441 MHz
high	CH78	2480 MHz

1.5 TEST METHODOLOGY AND RESULT

Harmonised Standard ETSI EN 300 328					
	Essential Requirem	ent	Requirement Conditionality		
No	Description	Reference: Clause No	U/C	Condition	Result
1	RF Output Power	4.3.1.2 or 4.3.2 2	U	-	Pass
2	Power Spectral Density	4.3.2.3	С	Only for non-FHSS equipment	N/A
3	Duty cycle, Tx-Sequence, Tx-gap	4.3.1.3 or 4.3.2.4	С	Only for non-Adaptive equipment	N/A
4	Accumulated Transmit time, Frequency Occupation & Hopping Sequence	4.3.1.4	С	Only for FHSS equipment	Pass
5	Hopping Frequency Separation	4.3.1.5	С	Only for FHSS equipment	Pass
6	Medium Utilization	4.3.1.6 or 4.3.2.5	С	Only for non-Adaptive equipment	N/A
7	Adaptivity	4.3.1.7 or 4.3.2.6	С	Only for Adaptive equipment	N/A
8	Occupied Channel Bandwidth	4.3.1.8 or 4.3.2.7	U	-	Pass
9	Transmitter unwanted emissions in the OOB domain	4.3.1.9 or 4.3.2.8	U	-	Pass
10	Transmitter unwanted emissions in the spurious domain	4.3.1.10 or 4.3.2.9	U	-	Pass
11	Receiver spurious emissions	4.3.1.11 or 4.3.2.10	U	-	Pass
12	Receiver Blocking	4.3.1.12 or 4.3.2.11	U	-	Pass
13	Geo-location capability	4.3.1.13 or 4.3.2.12	С	Only for equipment with geo-location capability	N/A

Note:

^{(1) &}quot;U/C": Indicates whether the requirement is unconditionally applicable (U) or is conditional upon the manufacturer's claimed functionality of the equipment (C).

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart Video Phone
Brand Name	XONTEL
Test Model	XT-50G
Series Model	N/A
Model Difference(s)	N/A
Power Source	1# DC voltage supplied from AC adapter. Model: F18L16-120150SPAV (EU) Model: F18L18-120150SPAB (UK) 2# Supplied from PoE.
Power Rating	1# I/P: 100-240V~ 50/60Hz 0.6A O/P: 12.0V === 1.5A 2# DC 48V
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK,π/4-DQPSK,8-DPSK
Modulation Technology	FHSS
Transfer Rate	1Mbps, 2Mbps, 3Mbps
Max. e.i.r.p.	1Mbps: 8.08 dBm (6.43 mW) 2Mbps: 5.26 dBm (3.36 mW) 3Mbps: 5.26 dBm (3.36 mW)
Categorization	□Receiver category 1 □Receiver category 2 □Receiver category 3

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	Dongguan YiJia Electronics Communication Technology Co.,Ltd.	YJL01.106.020. 301A	FPC	IPEX	3.0

Note: The antenna gain is provided by the manufacturer.

00/78

00~78

Fixed

Hopping

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration

mode(s) mentioned above was evaluated respectively. Operating Channel **Modulation Type Data Rate Test Items** Mode **GFSK** 1Mbps 00~78 RF Output Power 2Mbps Hopping π/4-DQPSK 8-DPSK 3Mbps Accumulated Transmit time. **GFSK** 1Mbps Frequency Occupation & Hopping Hopping 00~78 8-DPSK 3Mbps Sequence **GFSK** 1Mbps Hopping Frequency Separation 00~78 Hopping 8-DPSK 3Mbps **GFSK** 1Mbps Occupied Channel Bandwidth Fixed 00/78 8-DPSK 3Mbps Transmitter unwanted emissions in **GFSK** 1Mbps Hopping 00~78 the OOB domain 8-DPSK 3Mbps Transmitter unwanted emissions in the spurious domain **GFSK** 1Mbps Fixed 00/78 (30 MHz ~ 1 GHz) Transmitter unwanted emissions in **GFSK** 1Mbps the spurious domain Fixed 00/78 8-DPSK 3Mbps (1 GHz ~ 12.75 GHz) Receiver spurious emissions **GFSK** 00/78 1Mbps Fixed (30 MHz ~ 1 GHz)

Note:

1) The measurements for RF Output Power were tested with DH1/3/5 during 1Mbps, 2Mbps and 3Mbps, the worst case were 1Mbps (DH5) and 3Mbps (DH5), only worst case were documented for other test items except Accumulated Transmit time.

1Mbps

1Mbps

2) For radiated spurious emissions below 1 GHz and receiver spurious emissions above 1 GHz test, the 1Mbps channel 00/78 are found to be the worst case and recorded.

GFSK

GFSK

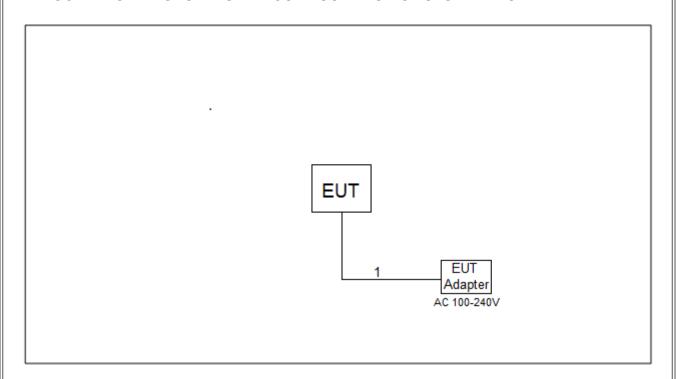
3) All adapters are differ in plug, so tested with EU plug.

Receiver spurious emissions

(1 GHz ~ 12.75 GHz)

Receiver Blocking

4) For radiated emission test, every axis (X, Y, Z) are verified. The test results shown in the following sections represent the worst case emissions.


2.3 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test Software Version	ADB
Frequency (MHz)	2402~2480
1Mbps	default
2Mbps	default
3Mbps	default

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model No.	Series No.
	-	-	-	-

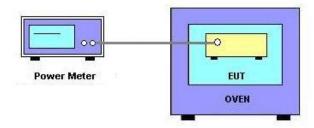
Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1.2m

3. RF OUTPUT POWER

3.1 APPLIED PROCEDURES / LIMIT

Clause	4.3.1.2
Test Item	RF output power
Limit	The RF output power for FHSS equipment shall be equal to or less than 20 dBm. Note: For Non-adaptive FHSS equipment, the manufacturer may have declared a reduced RF Output Power (see clause 5.4.1 m) and associated Duty Cycle (see clause 5.4.1 e) that will ensure that the equipment meets the requirement for the Medium Utilization (MU) factor further described in clause 4.3.1.6. This is verified by the conformance test referred to in clause 4.3.1.6.4. For non-adaptive FHSS equipment, where the manufacturer has declared an RF output power lower than 20 dBm e.i.r.p., the RF output power shall be equal to or less than that declared value. This limit shall apply for any combination of power level and intended antenna assembly.

3.2 TEST PROCEDURES


Refer to ETSI EN 300 328, chapter 5.4.2.2.1.

3.3 TEST SETUP LAYOUT

Normal Condition

Extreme Condition

3.4 TEST DEVIATION

There is no deviation with the original standard.

3.5 EUT OPERATION DURING TEST

The measurements shall be performed during continuously transmitting.

3.6 TEST RESULTS

Please refer to the Appendix A.

4. DUTY CYCLE, TX-SEQUENCE, TX-GAP

4.1 APPLIED PROCEDURES / LIMIT

Clause	4.3.1.3
Test Item	Duty Cycle, Tx-sequence, Tx-gap
Limit	For non-adaptive FHSS equipment, The Duty Cycle shall be equal to or less than the maximum value declared by the manufacturer. The maximum Tx-sequence time shall be 5 ms. The minimum Tx-gap time shall be 5 ms. NOTE: For Non-adaptive FHSS equipment, the manufacturer may have declared a reduced RF Output Power (see clause 5.4.1 m) and associated Duty Cycle (see clause 5.4.1 e) that will ensure that the equipment meets the requirements for the Medium Utilization (MU) factors further described in clause 4.3.1.6. This is verified by the conformance test referred to in clause 4.3.1.6.4.

4.2 TEST PROCEDURES

Refer to ETSI EN 300 328, chapter 5.4.2.2.1.

4.3 TEST SETUP LAYOUT

4.4 TEST DEVIATION

There is no deviation with the original standard.

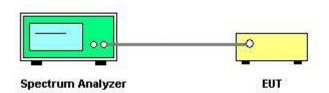
4.5 EUT OPERATION DURING TEST

The measurements shall be performed during continuously transmitting.

4.6 TEST RESULTS

Please refer to the Appendix B.

5. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE


5.1 APPLIED PROCEDURES / LIMIT

5.2 TEST PROCEDURES

Refer to ETSI EN 300 328, chapter 5.4.4.2.1.

5.3 TEST SETUP LAYOUT

5.4 TEST DEVIATION

There is no deviation with the original standard.

5.5 EUT OPERATION DURING TEST

The measurements shall be performed during continuously transmitting.

5.6 TEST RESULTS

Please refer to the Appendix C.

6. HOPPING FREQUENCY SEPARATION

6.1 APPLIED PROCEDURES / LIMIT

Clause	4.3.1.5
Test Item	Hopping Frequency Separation
Limit	Non-adaptive FHSS equipment For non-adaptive FHSS equipment, the Hopping Frequency Separation shall be equal to or greater than the Occupied Channel Bandwidth (see clause 4.3.1.8), with a minimum separation of 100 kHz. For FHSS equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for non-adaptive FHSS equipment operating in a mode where the RF Output power is less than 10 dBm e.i.r.p., the Hopping Frequency Separation shall be equal to or greater than 100 kHz. Adaptive FHSS equipment For adaptive FHSS equipment, the minimum Hopping Frequency Separation shall be 100 kHz. Adaptive FHSS equipment that switched to a non-adaptive mode for one or more hopping frequencies because interference was detected on each of these hopping frequencies with a level above the threshold level defined in clause 4.3.1.7.2.2, point 5 or clause 4.3.1.7.3.2, point 5, does not have to comply with the Hopping Frequency Separation provided in clause 4.3.1.5.3.1 for non-adaptive FHSS equipment. If the Hopping Frequency Separation is below the Occupied Channel Bandwidth but greater than 100 kHz, the equipment is allowed to continue to operate with this Hopping Frequency Separation as long as the interference remains present on these hopping frequencies. As this relaxed Hopping Frequency Separation only applies to adaptive FHSS equipment, the FHSS equipment shall continue to operate in an adaptive mode on all other hopping frequencies. Adaptive FHSS equipment which decided to operate in a non-adaptive mode on one or more hopping frequencies without the presence of interference, shall comply with the limit for Hopping Frequency Separation for non-adaptive FHSS equipment defined in clause 4.3.1.5.3.1 (first paragraph) for these hopping frequencies.

6.2 TEST PROCEDURES

Refer to ETSI EN 300 328, chapter 5.4.5.2.1.

6.3 TEST SETUP LAYOUT

6.4 TEST DEVIATION

There is no deviation with the original standard.

6.5 EUT OPERATION DURING TEST

The measurements shall be performed during continuously transmitting.

6.6 TEST RESULTS

Please refer to the Appendix D.

7. MEDIUM UTILIZATION (MU) FACTOR

7.1 APPLIED PROCEDURES / LIMIT

Clause	4.3.1.6
Test Item	Medium Utilization (MU) factor
l imit	The maximum Medium Utilization factor for non-adaptive FHSS equipment shall be 10 %.

7.2 TEST PROCEDURES

Refer to ETSI EN 300 328, chapter 5.4.2.2.1.

7.3 TEST SETUP LAYOUT

7.4 TEST DEVIATION

There is no deviation with the original standard.

7.5 EUT OPERATION DURING TEST

The measurements shall be performed during continuously transmitting.

7.6 TEST RESULTS

Please refer to the Appendix E.

8. ADAPTIVITY (ADAPTIVE FREQUENCY HOPPING)

8.1 APPLIED PROCEDURES / LIMIT

Clause	4.3.1.7
Test Item	Adaptivity (Adaptive Frequency Hopping)
Limit	Adaptive FHSS using LBT Adaptive FHSS using LBT Adaptive FHSS equipment using LBT shall comply with the following minimum set of requirements: 1) At the start of every dwell time, before transmission on a hopping frequency, the equipment shall perform a Clear Channel Assessment (CCA) check using energy detect. The CCA observation time shall be not less than 0,2 % of the Channel Occupancy Time with a minimum of 18 µs. If the equipment finds the hopping frequency to be clear, it may transmit immediately. 2) If it is determined that a signal is present with a level above the detection threshold defined in step 5 the hopping frequency shall be marked as 'unavailable'. Then the equipment may jump to the next frequency in the hopping scheme even before the end of the dwell time, but in that case the 'unavailable' channel cannot be considered as being 'occupied' and shall be disregarded with respect to the requirement of the minimum number of hopping frequencies as defined in clause 4,3.1.4.3.2. Alternatively, the equipment can remain on the frequency during the remainder of the dwell time. However, if the equipment remains on the frequency with the intention to transmit, it shall perform an Extended CCA check in which the (unavailable) channel is observed for a random duration between the value defined for the CCA observation time in step 1 and 5 % of the Channel Occupancy Time defined in step 3. If the Extended CCA check has determined the frequency to be no longer occupied, the hopping frequency becomes available again. If the Extended CCA check chash determined the channel still to be occupied, it shall perform new Extended CCA checks until the channel still to be occupied, it shall perform new Extended CCA checks until the channel still to be occupied. 3) The total time during which an equipment has transmissions on a given hopping frequency without reevaluating the availability of that frequency is defined as the Channel Occupancy Time. The Channel Occupancy Time for a given hopping frequency which starts im

6) The equipment shall comply with the requirements defined in step 1 to step 4 of the present clause in the presence of an unwanted CW signal as defined in table 2.

Table 2: Unwanted Signal parameters

Limit

	signal mean power ompanion device	Unwanted CW signal frequency (MHz)	Unwanted CW signal power (dBm)
sufficient t	to maintain the link	2 395 or 2 488,5	-35
(see note	2)	(see note 1)	(see note 3)
NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1. NOTE 2: A typical conducted value which can be used in most cases is -50 dBm/MHz.			ency shall be used for to 2 483,5 MHz. See ases is -50 dBm/MHz.
NOTE 3:			

Adaptive FHSS using DAA

Adaptive FHSS equipment using DAA, shall comply with the following minimum set of requirements:

- 1) During normal operation, the equipment shall evaluate the presence of a signal for each of its hopping frequencies. If it is determined that a signal is present with a level above the detection threshold defined in step 5 the hopping frequency shall be marked as 'unavailable'.
- 2) The hopping frequency shall remain unavailable for a minimum time equal to 1 second or 5 times the actual number of hopping frequencies in the current (adapted) channel map used by the equipment, multiplied with the Channel Occupancy Time whichever is greater. There shall be no transmissions during this silent period on this hopping frequency. After this, the hopping frequency may be considered again as an 'available' frequency.
- 3) The total time during which an equipment has transmissions on a given hopping frequency without re-evaluating the availability of that hopping frequency is defined as the Channel Occupancy Time.

The Channel Occupancy Time for a given hopping frequency shall be less than 40 ms. For equipment using a dwell time > 40 ms that wants to have other transmissions during the same hop (dwell time) an Idle Period (no transmissions) of minimum 5 % of the Channel Occupancy Period with a minimum of 100 μ s shall be implemented.

After the Idle Period has expired, the equipment may continue its normal operation as explained in step 1.

For FHSS equipment using DAA with a dwell time < 40 ms, the maximum Channel Occupancy Time may be non-contiguous, i.e. spread over a number of Hopping Sequences (equal to 40 ms divided by the dwell time [ms]).

- 4) In case the 'unavailable' channels remain in the Hopping Sequence, apart from the Short Control Signalling Transmissions referred to in clause 4.3.1.7.4, there shall be no transmissions on these 'unavailable' channels. In case the 'unavailable channels' are removed from the Hopping Sequence, a minimum of N hopping frequencies as defined in clause 4.3.1.4.3.2 shall always be maintained.
- 5) The detection threshold shall be proportional to the transmit power of the transmitter: for a 20 dBm e.i.r.p. transmitter the detection threshold level (TL) shall be equal to or less than -70 dBm/MHz at the input to the receiver assuming a 0 dBi (receive) antenna assembly. This threshold level (TL) may be corrected for the (receive) antenna assembly gain (G); however, beamforming gain (Y) shall not be taken into account. For power levels below 20 dBm e.i.r.p., the detection threshold level may be relaxed to:

 $TL = -70 \text{ dBm/MHz} + 10 \text{ x log}_{10} (100 \text{ mW/P}_{out}) (P_{out} \text{ in mW e.i.r.p.})$

Limit

6) The equipment shall comply with the requirements defined in step 1 to step 4 of the present clause in the presence of an unwanted CW signal as defined in table 3.

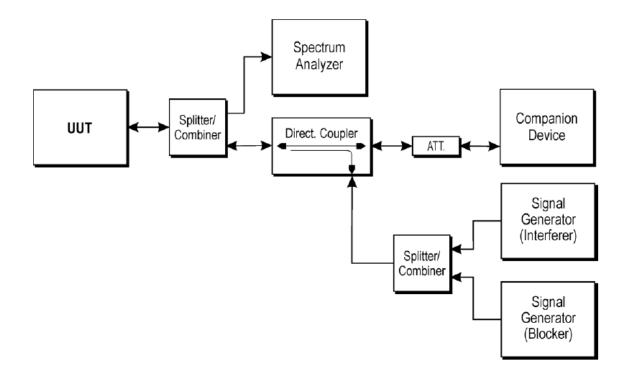
Table 3: Unwanted Signal parameters

Wanted signal mean power from companion device (dBm)	Unwanted signal frequency (MHz)	Unwanted CW signal power (dBm)			
-30	2 395 or 2 488,5	-35			
(see note 2)	(see note 1)	(see note 2)			
NOTE 4. The bight of formation by the state of the state					

NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1.

NOTE 2: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density in front of the UUT antenna (see example below).

Short Control Signalling Transmissions


If implemented, Short Control Signalling Transmissions shall have a maximum TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms or within an observation period equal to the dwell time, whichever is less.

8.2 TEST PROCEDURES

Limit

Refer to ETSI EN 300 328, chapter 5.4.6.2.1.

8.3 TEST SETUP LAYOUT

o	TFST	DEV	/I A T I	\sim NI
X 4	1521	1) F V		

There is no deviation with the original standard.

8.5 EUT OPERATION DURING TEST

The measurements shall be performed during normal operation.

8.6 TEST RESULTS

Please refer to the Appendix F.

9. OCCUPIED CHANNEL BANDWIDTH

9.1 APPLIED PROCEDURES / LIMIT

Clause	4.3.1.8			
Test Item	Occupied Channel Bandwidth			
	The Occupied Channel Bandwidth for each hopping frequency shall be within the band given in table 1. Table 1: Service frequency bands			
,		Service frequency bands		
Limit	Transmit	2 400 MHz to 2 483,5 MHz		
	Receive	2 400 MHz to 2 483,5 MHz		
	In addition, for non-adaptive FHSS equipment with e.i.r.p. greater than 10 dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than 5 MHz.			

9.2 TEST PROCEDURES

Refer to ETSI EN 300 328, chapter 5.4.7.2.1.

9.3 TEST SETUP LAYOUT

9.4 TEST DEVIATION

There is no deviation with the original standard.

9.5 EUT OPERATION DURING TEST

The measurements shall be performed during continuously transmitting.

9.6 TEST RESULTS

Please refer to the Appendix G.

10. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

10.1 APPLIED PROCEDURES / LIMIT

Clause	4.3.1.9				
Test Item	Transmitter unv	Transmitter unwanted emissions in the out-of-band domain			
		unwanted emission ided by the mask in		-of-band domain sh	all not exceed
	Spurious Domain	Out Of Band Domain (OOB)	Allocated Band	Out Of Bend Domain (OOB)	Spurious Domain
Limit	В	А			
	С				
	2 400 MHz A: -10 dBm/MHz e.i.r B: -20 dBm/MHz e.i.r C: Spurious Domain	.р. р.	00 MHz 2 483,5 i BW = Occupi	MHz 2 483,5 MHz + BW 2 483,5 ed Channel Bandwidth in MHz or 1 MH	

10.2 TEST PROCEDURES

Refer to ETSI EN 300 328, chapter 5.4.8.2.1.

10.3 TEST SETUP LAYOUT

10.4 TEST DEVIATION

There is no deviation with the original standard.

10.5 EUT OPERATION DURING TEST

The measurements shall be performed during continuously transmitting.

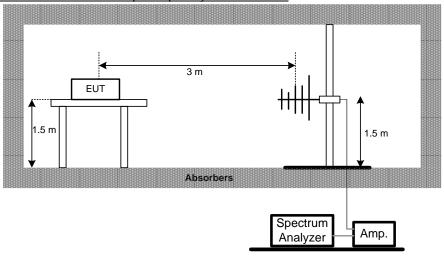
10.6 TEST RESULTS

Please refer to the Appendix H.

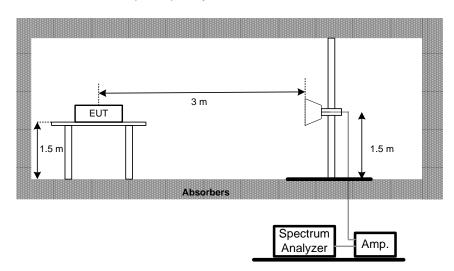
11. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

11.1 APPLIED PROCEDURES / LIMIT

Clause	4.3.1.10				
Test Item	Tı	Transmitter unwanted emissions in the spurious domain			
	The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 4. In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz. Table 4: Transmitter limits for spurious emissions				
		Frequency range	Maximum power	Bandwidth	
Limit		30 MHz to 47 MHz	-36 dBm	100 kHz	
Liiiit		47 MHz to 74 MHz	-54 dBm	100 kHz	
			74 MHz to 87,5 MHz	-36 dBm	100 kHz
		87,5 MHz to 118 MHz	-54 dBm	100 kHz	
		118 MHz to 174 MHz	-36 dBm	100 kHz	
		174 MHz to 230 MHz	-54 dBm	100 kHz	
		230 MHz to 470 MHz	-36 dBm	100 kHz	
		470 MHz to 694 MHz	-54 dBm	100 kHz	
		694 MHz to 1 GHz	-36 dBm	100 kHz	
		1 GHz to 12,75 GHz	-30 dBm	1 MHz	


11.2 TEST PROCEDURES

Refer to ETSI EN 300 328, chapter 5.4.9.2.2.



11.3 TEST SETUP LAYOUT

Radiated Measurement Test Set-Up Frequency Below 1 GHz

Radiated Measurement Test Set-Up Frequency Above 1 GHz

11.4 TEST DEVIATION

There is no deviation with the original standard.

11.5 EUT OPERATION DURING TEST

The measurements shall be performed during continuously transmitting.

11.6 TEST RESULTS

Please refer to the Appendix I.

12. RECEIVER SPURIOUS EMISSIONS

12.1 APPLIED PROCEDURES / LIMIT

Clause	4.3.1.11	4.3.1.11		
Test Item	Receiver spurious emissions	}		
Limit	equipment (without antenna to 1 GHz and e.i.r.p. for emis	with antenna connector of (conducted). e cabinet or emissions connectors), these lim	ors, these limits apply to s radiated by integral antenna lits are e.r.p. for emissions up	
	Frequency range	Maximum power	Bandwidth	
	30 MHz to 1 GHz	-57 dBm	100 kHz	
	1 GHz to 12,75 GHz	-47 dBm	1 MHz	

12.2 TEST PROCEDURES

Refer to ETSI EN 300 328, chapter 5.4.10.2.2.

12.3 TEST SETUP LAYOUT

Refer to clause 11.3.

12.4 TEST DEVIATION

There is no deviation with the original standard.

12.5 EUT OPERATION DURING TEST

The measurements shall be performed during continuously receiving.

12.6 TEST RESULTS

Please refer to the Appendix J.

13. RECEIVER BLOCKING

13.1 APPLIED PROCEDURES / LIMIT

Clause	4.3.1.12			
Test Item	Receiver Blocking			
	While maintaining the minimu 4.3.1.12.3, the blocking levels a greater than the limits defined table 6, table 7 or table 8. Receiver Category 1 Table 6 contains the Receiver B equipment. Table 6: Receiver Blocking p	at specified free for the application	quency offsets able receiver ca eters for Receiv	shall be equal to or ategory provided in ver Category 1
	Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
	(-133 dBm + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504		
Limit	(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2 524 2 584 2 674	-34	cw
	NOTE 1: OCBW is in Hz. NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P _{min} + 26 dB where P _{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P _{min} + 20 dB where P _{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.			

Receiver Category 2

Table 7 contains the Receiver Blocking parameters for Receiver Category 2 equipment.

Table 7: Receiver Blocking parameters receiver Category 2 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB) or (-74 dBm + 10 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Limit

Receiver Category 3

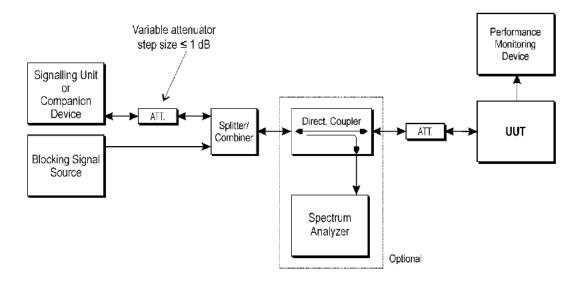
Table 8 contains the Receiver Blocking parameters for Receiver Category 3 equipment.

Table 8: Receiver Blocking parameters receiver Category 3 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB) or (-74 dBm + 20 dB) whichever is less	2 380 2 504	0.4	OW
(see note 2)	2 300 2 584	-34	CW

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative the test may be performed using a wanted signal up to P_{min} + 30 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.


NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

13.2 TEST PROCEDURES

Refer to ETSI EN 300 328, chapter 5.4.11.2.1.

13.3 TEST SETUP LAYOUT

13.4 TEST DEVIATION

There is no deviation with the original standard.

13.5 EUT OPERATION DURING TEST

The measurements shall be performed during normal receiving.

13.6 TEST RESULTS

Please refer to the Appendix K.

14. MEASUREMENT INSTRUMENTS LIST

	RF Output Power				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Cable	emci	EMC104-SM-SM-9000 (0.01GHz-26.5GHz)	N/A	N/A
2	Power Sensor	Agilent	U2021XA	MY53320006	Feb. 08, 2022
3	Power Sensor	Agilent	U2021XA	MY53340001	Feb. 08, 2022
4	Power Sensor	Agilent	U2021XA	MY53340005	Feb. 08, 2022
5	Power Sensor	Agilent	U2021XA	MY53340007	Feb. 08, 2022
6	Const Temp. & Humi dity Chamber	CEPREI	CEEC-M64T-40	15-008	Feb. 27, 2022
7	Measurement Software	BTL	EN300328	N/A	N/A

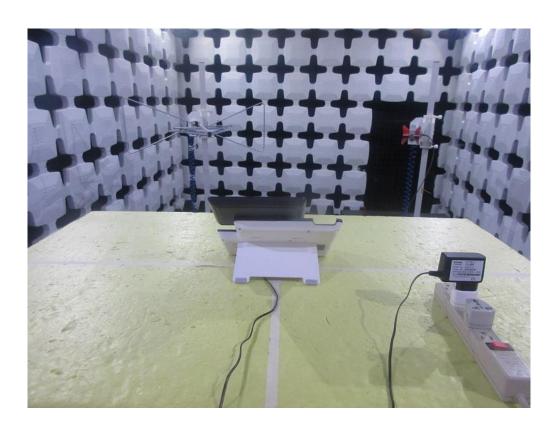
	Accumulated Transmit time, Frequency Occupation and Hopping Sequence & Hopping Frequency Separation & Occupied Channel Bandwidth & Transmitter unwanted emissions in the out-of-band domain				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EXA Spectrum Analyzer	Agilent	N9010A	MY54200164	Feb. 28, 2022
2	Cable	emci	EMC104-SM-SM-9000 (0.01GHz-26.5GHz)	N/A	N/A
3	Measurement Software	BTL	EN300328	N/A	N/A

			Adaptivity		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	MXG Vector Signal Generator	Keysight	N5182B	MY57300568	Jul. 10, 2022
2	EXA Spectrum Analyzer	Agilent	N9010A	MY54200164	Feb. 28, 2022
3	MXG Vector Signal Generator	Agilent	N5182A	MY49060447	Feb. 28, 2022
4	Data Collector	Keysight	AD191A	TW5451034	N/A
5	Wi-Fi Router	tp-link	Archer AX6000	N/A	N/A
6	Measurement Software	BTL	EN300328	N/A	N/A

		Red	ceiver Blocking		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	POWER SPLITTER	Mini-Circuits	ZFRSC-183-S+	SF601301339- 2	Feb. 28, 2022
2	wideband radio communication tester	R&S	CMW500	152372	Feb. 27, 2022
3	MXG Vector Signal Generator	Agilent	N5182A	MY49060447	Feb. 28, 2022

	Transmitter and Receiver Spurious Emission (Radiated Measurement)				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	587	Nov. 08, 2022
2	DRG Horn Antenna	ETS	3117-PA	221576	Mar. 23, 2022
3	Amplifier	HP	8447D	2944A11203	Feb. 28, 2022
4	Preamplifier	ETS	3117-PA	221576	Feb. 28, 2022
5	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Feb. 28, 2022
6	Controller	Innco Systems Gmbh	CO3000-4port	CO3000/1155/ 45430119/P	N/A
7	Cable	Talent microwave	L6-NMNM-3M	19052129	N/A
8	Cable	Talent microwave	A81-SMAMSMAM-2M	19052134	N/A
9	Cable	Talent microwave	A81-SMAMSMAM-12. 5M	19052135	N/A
10	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A

Remark: "N/A" denotes no model name, serial no. or calibration specified.


All calibration period of equipment list is one year.

15. EUT TEST PHOTO

APPENDIX A - RF OUTPUT POWER

Test Mode:	TX Mode_1Mbps

Test Condition	s	e.i.r.p. (dBm)
T nom (°C)	22.4	8.08
T min (°C)	0	7.94
T max (°C)	45	7.88
Max. e.i.r.p.		8.08
Limits		20dBm
Result		Pass
Burst Number		11

Test Mode:	TX Mode_2Mbps	
------------	---------------	--

Test Conditions		e.i.r.p. (dBm)
T nom (°C)	22.4	5.26
T min (°C)	0	5.15
T max (°C)	45	5.06
Max. e.i.r.p.		5.26
Limits		20dBm
Result		Pass
Burst Number		11

Test Mode:	TX Mode_3Mbps
------------	---------------

Test Conditions		e.i.r.p. (dBm)
T nom (°C)	22.4	5.26
T min (°C)	0	5.12
T max (°C)	45	4.98
Max. e.i.r.p.		5.26
Limits		20dBm
Result		Pass
Burst Number	•	11

Note: e.i.r.p. = Conducted output power + G (Ant Gain)

APPENDIX B - DUTY CYCLE, TX-SEQUENCE, TX-GAP

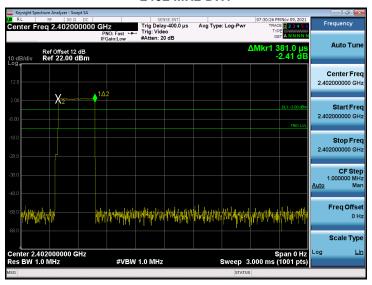
Test Mode: N/A

Note: "N/A" denotes test is not applicable to this device.

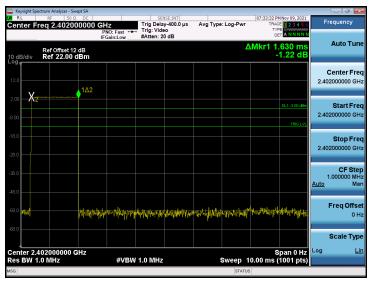
APPENDIX C - ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

Test Mode:	TX Mode_1Mbps
------------	---------------

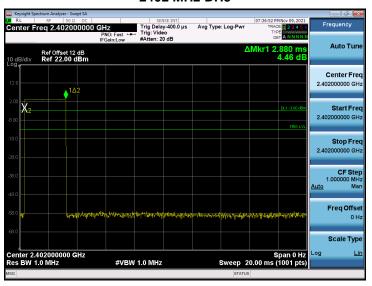
Data Daalest	Frequency	Pulse Duration	Dwell Time	Dwell Time	Limits
Data Packet	(MHz)	(ms)	(3.16s Pluse N)	(s)	(s)
DH1	2402	0.381	32	0.1219	0.4000
DH3	2402	1.630	15	0.2445	0.4000
DH5	2402	2.880	8	0.2304	0.4000
DH1	2480	0.381	32	0.1219	0.4000
DH3	2480	1.640	17	0.2788	0.4000
DH5	2480	2.880	7	0.2016	0.4000


NOTE:

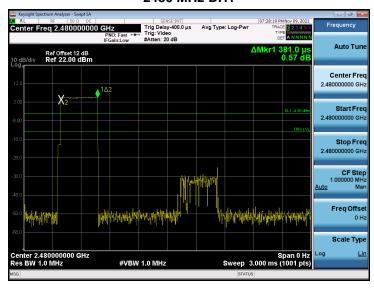
DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $10.12 \times 31.6 = 320$ within 31.6 seconds. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $5.06 \times 31.6 = 160$ within 31.6 seconds. DH5 Packet permit maximum 1600 / 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $3.37 \times 31.6 = 106.6$ within 31.6 seconds.


Mode	Frequency (MHz)	Number of Hopping Channel	Time (ms) of 4*dwell time* (ms)*Actual number of hopping frequencies in use	Number of transmission in a period of 4*dwell time*Actual number of hopping frequencies in use	4*dwell time* 79 (ms) Minimum Frequency Occupation (ms)	Minimum Limit (ms)	Result
DH1	2402	79	120.3960	2	0.7620	0.381	Pass
DH3	2402	79	515.0800	4	6.5200	1.630	Pass
DH5	2402	79	910.0800	2	5.7600	2.880	Pass
DH1	2480	79	120.3960	2	0.7620	0.381	Pass
DH3	2480	79	518.2400	3	4.9200	1.640	Pass
DH5	2480	79	910.0800	3	8.6400	2.880	Pass

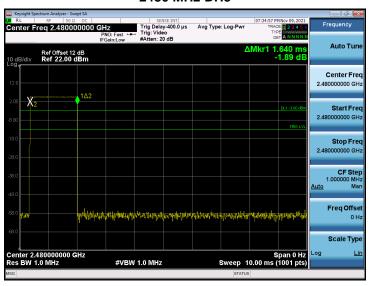
2402 MHz-DH1



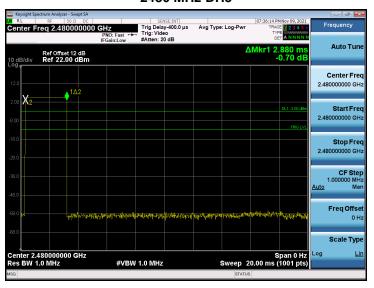
2402 MHz-DH3



2402 MHz-DH5

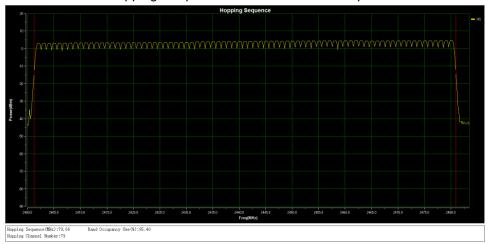


2480 MHz-DH1



2480 MHz-DH3

2480 MHz-DH5



Test Mode: TX Mode_1Mbps

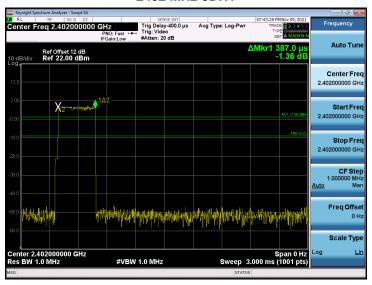
Frequency Band (MHz)	Number of Hopping Frequencies	Limit	Result
2400-2483.5	79	≥ 15	PASS

Frequency Band	20dB Points Occupied Bandwidth (MHz)	Limit	Result
(MHz)	2006 Folinis Occupied Bandwidth (Miliz)	(MHz)	Kesuit
2400-2483.5	79.66	≥ 58.45	PASS

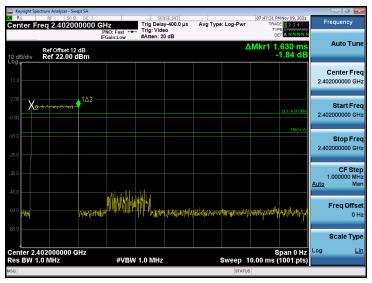
Number of Hopping Frequencies & 20dB Points Occupied Bandwidth

Te	st Mode:	TX Mode_3Mbps	

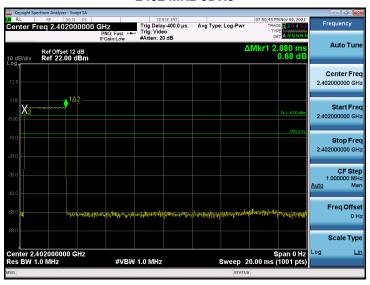
Data Daglest	Frequency	Pulse Duration	Dwell Time	Dwell Time	Limits
Data Packet	(MHz)	(ms)	(3.16s Pluse N)	(s)	(s)
3DH1	2402	0.387	32	0.1238	0.4000
3DH3	2402	1.630	17	0.2771	0.4000
3DH5	2402	2.880	10	0.2880	0.4000
3DH1	2480	0.387	31	0.1200	0.4000
3DH3	2480	1.640	18	0.2952	0.4000
3DH5	2480	2.880	11	0.3168	0.4000


NOTE:

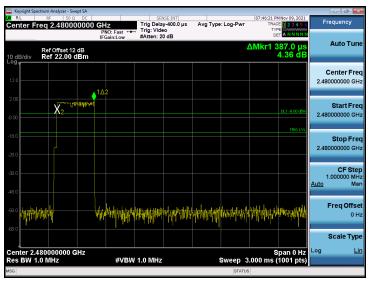
3DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $10.12 \times 31.6 = 320$ within 31.6 seconds. 3DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $5.06 \times 31.6 = 160$ within 31.6 seconds. 3DH5 Packet permit maximum 1600 / 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $3.37 \times 31.6 = 106.6$ within 31.6 seconds.


Mode	Frequency (MHz)	Number of Hopping Channel	Time (ms) of 4*dwell time* (ms)*Actual number of hopping frequencies in use	Number of transmission in a period of 4*dwell time*Actual number of hopping frequencies in use	4*dwell time* 79 (ms) Minimum Frequency Occupation (ms)	Minimum Limit (ms)	Result
3DH1	2402	79	122.2920	2	0.7740	0.387	Pass
3DH3	2402	79	515.0800	2	3.2600	1.630	Pass
3DH5	2402	79	910.0800	1	2.8800	2.880	Pass
3DH1	2480	79	122.2920	2	0.7740	0.387	Pass
3DH3	2480	79	518.2400	2	3.2800	1.640	Pass
3DH5	2480	79	910.0800	1	2.8800	2.880	Pass

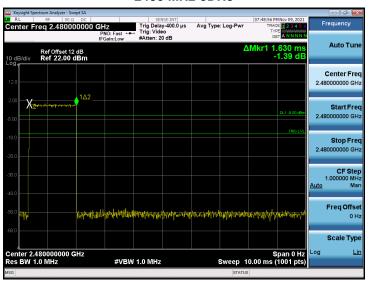
2402 MHz-3DH1



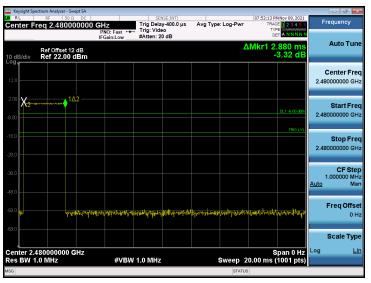
2402 MHz-3DH3



2402 MHz-3DH5

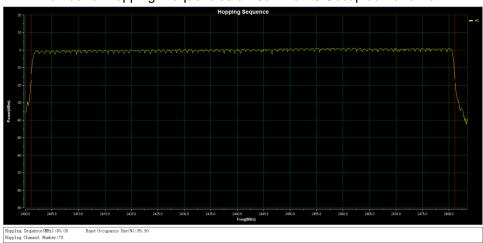


2480 MHz-3DH1



2480 MHz-3DH3

2480 MHz-3DH5

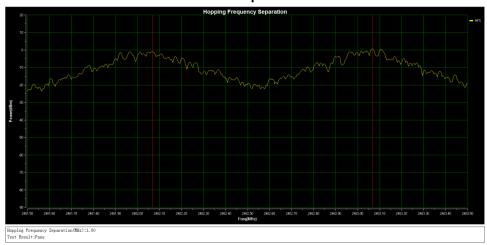


Test Mode:	TX Mode_3Mbps
------------	---------------

Frequency Band (MHz)	Number of Hopping Frequencies	Limit	Result
2400-2483.5	79	≥ 15	PASS

Frequency Band (MHz)	20dB Points Occupied Bandwidth (MHz)	Limit (MHz)	Result
2400-2483.5	80.08	≥ 58.45	PASS

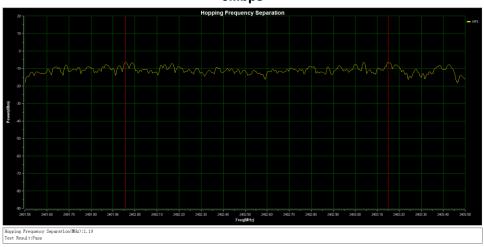
Number of Hopping Frequencies & 20dB Points Occupied Bandwidth


APPENDIX D - HOPPING FREQUENCY SEPARATION

Test Mode:	TX Mode_1Mbps	

Frequency Band	Channel Separation	Channel Separation Limit	Popult	
(MHz)	(MHz)	(kHz)	Result	
2400-2483.5	1.00	100	Pass	

1Mbps



Test Mode: TX Mode_3Mbps

Frequency Band	Channel Separation	Channel Separation Limit	Result
(MHz)	(MHz)	(kHz)	
2400-2483.5	1.19	100	Pass

3Mbps

APPENDIX E - MEDIUM UTILIZATION (MU) FACTOR

Test Mode: N/A

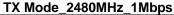
Note: "N/A" denotes test is not applicable to this device.

APPENDIX F - ADAPTIVITY

Test Mode: N/A

Note: "N/A" denotes test is not applicable to this device.

APPENDIX G - OCCUPIED CHANNEL BANDWIDTH



Test Mode:	TX Mode 1Mbps
TOST WIGGO.	17 Mode_ 1Mbps

Frequency (MHz)	Occupied Channel Bandwidth (MHz)	F∟at 99% BW (MHz)	F _H at 99% BW (MHz)	Result
2402	0.906	2401.60	-	
2480	0.906	-	2480.51	Pass
	N/A	F _L > 2400	F _H < 2483.5	

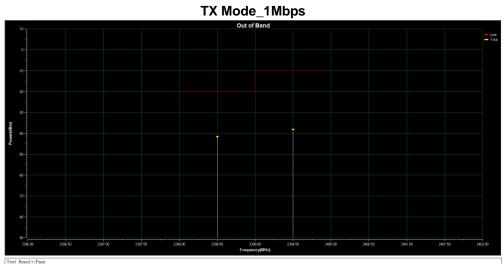
TX Mode_2402MHz_1Mbps

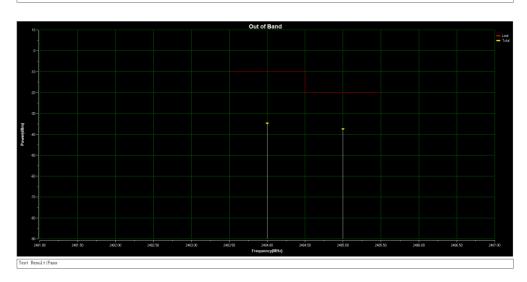
_		
	Test Mode:	TX Mode_3Mbps

Frequency (MHz)	Occupied Channel Bandwidth (MHz)	F∟at 99% BW (MHz)	F _H at 99% BW (MHz)	Result
2402	1.227	2401.43	-	
2480	1.233	-	2480.67	Pass
	N/A	F _L > 2400	F _H < 2483.5	

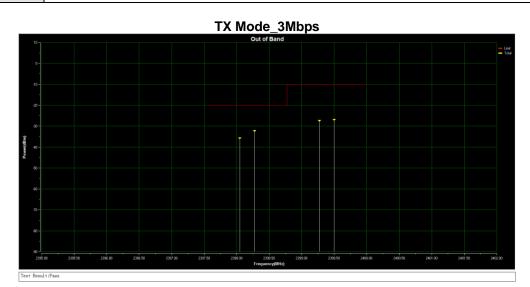
TX Mode_2402MHz_3Mbps

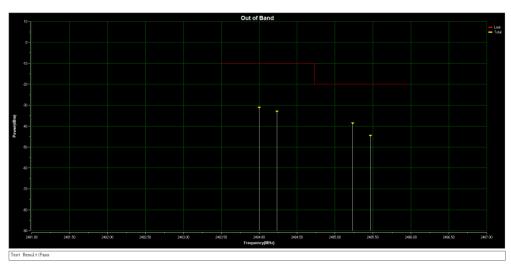
TX Mode_2480MHz_3Mbps



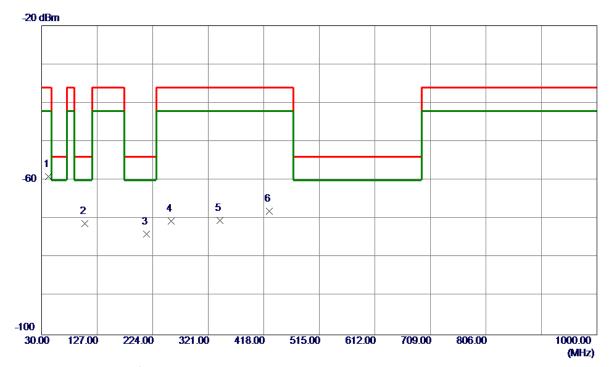


APPENDIX H - TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

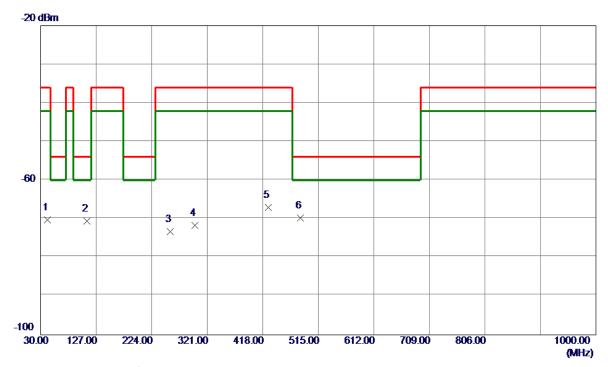

Test Mode: TX Mode_1Mbps



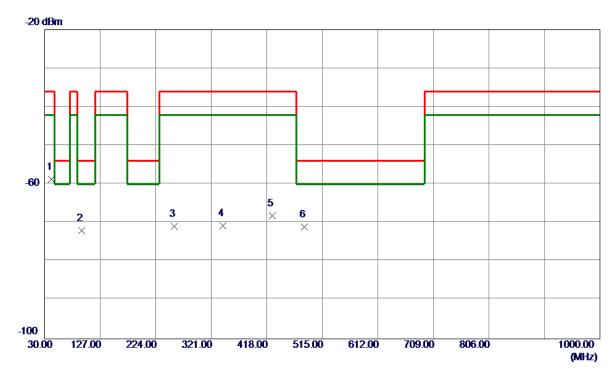
Test Mode: TX Mode_3Mbps



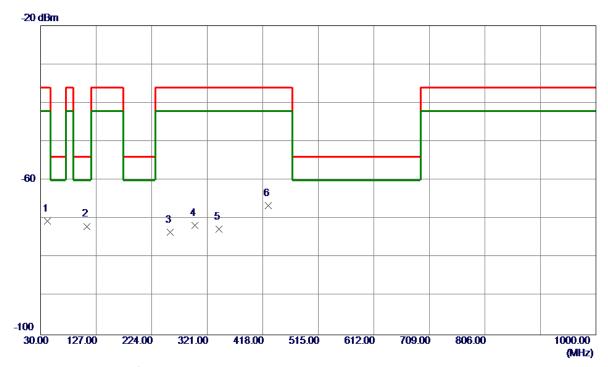
APPENDIX I - TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN



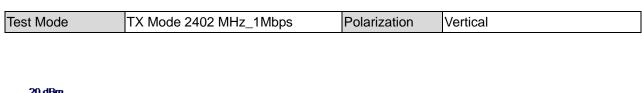
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	42. 2220	-56. 94	-2. 17	-59. 11	-36. 00	-23. 11	RMS	
2 *	105. 4660	-62. 10	-9. 11	-71. 21	−54. 00	-17. 21	RMS	
3	213. 7180	-66. 88	-7. 08	-73. 96	-54. 00	-19. 96	RMS	
4	256. 4950	-66. 51	−3. 98	-70. 49	-36. 00	-34. 49	RMS	
5	341. 9520	-67. 68	-2. 65	-70. 33	-36. 00	-34. 33	RMS	
6	427, 4090	-66, 68	-1. 35	-68. 03	-36, 00	-32. 03	RMS	



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	41.8339	-67. 15	-3. 03	-70. 18	-36. 00	-34. 18	RMS	
2	110. 9950	-61. 77	-8. 77	−70. 54	−54. 00	-16.54	RMS	
3	256. 3980	-68. 80	-4. 50	-73. 30	-36. 00	-37. 30	RMS	
4	299. 1750	-67. 89	-3.84	-71. 73	-36. 00	-35. 73	RMS	
5	427. 5060	-65. 73	-1. 38	-67. 11	-36. 00	-31. 11	RMS	
6 *	484, 2510	-69. 02	-0. 79	-69. 81	-54. 00	-15. 81	RMS	



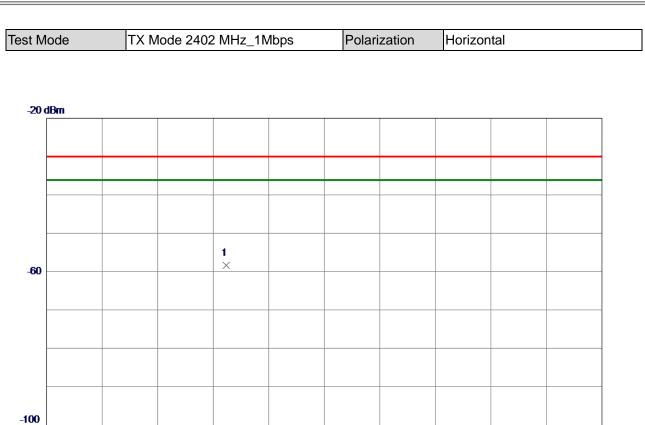
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	42. 3190	-56. 55	-2. 14	-58. 69	-36. 00	-22. 69	RMS	
2	94. 6990	-62. 54	-9. 48	−72. 02	-54. 00	-18. 02	RMS	
3	256. 4950	-66. 87	-3. 98	-70. 85	-36. 00	-34. 85	RMS	
4	341. 9520	-68. 06	-2.65	-70. 71	-36. 00	-34. 71	RMS	
5	427. 4090	-66. 77	-1. 35	-68. 12	-36. 00	-32. 12	RMS	
6 *	484. 1540	-70. 24	-0. 79	-71. 03	-54. 00	-17. 03	RMS	



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	41. 5430	-67. 52	-3. 07	-70. 59	-36. 00	-34. 59	RMS	
2 *	111. 0920	-63. 17	-8. 75	-71. 92	−54. 00	-17. 92	RMS	
3	256. 4950	-68. 89	-4. 51	-73. 40	-36. 00	-37. 40	RMS	
4	299. 1750	-67. 77	-3.84	-71. 61	-36. 00	-35. 61	RMS	
5	341. 9520	-69. 86	-2. 82	-72. 68	-36. 00	-36. 68	RMS	
6	427, 5060	-65. 19	-1. 38	-66. 57	-36, 00	-30. 57	RMS	

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment	
1 *	6464, 925	0 -64, 01	5. 44	-58, 57	-30, 00	-28, 57	RMS		

12750.00 (MHz)

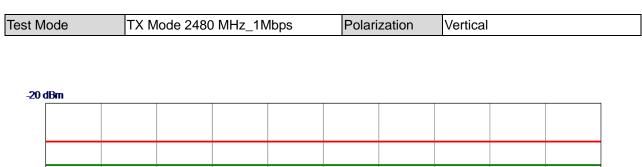


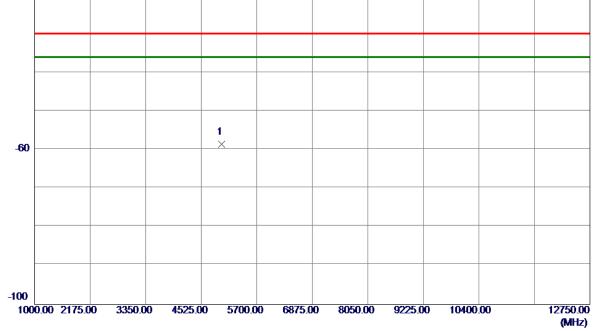
1000.00 2175.00

3350.00

4525.00

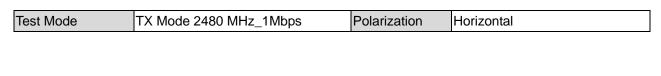
5700.00

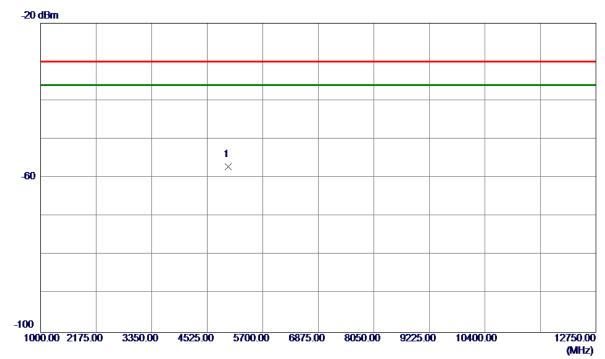

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment	
1 *	4801, 125	0 -63, 42	5. 38	-58. 04	-30, 00	-28. 04	RMS		


6875.00

8050.00 9225.00

10400.00

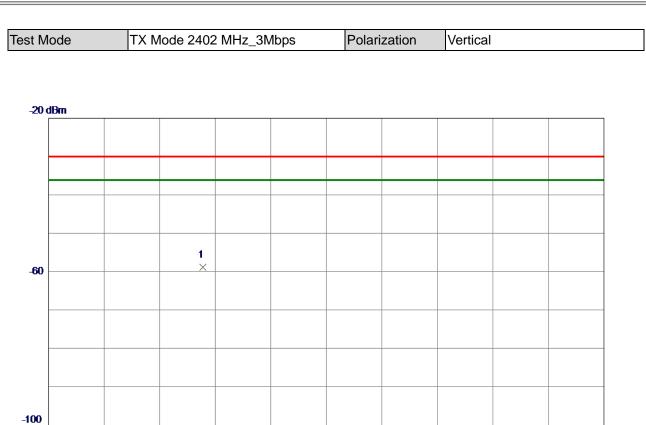




No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment	
1 *	4959, 750	0 -63, 19	4. 60	-58, 59	-30, 00	-28, 59	RMS		

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment	
1 *	4962. 6880	-62. 50	5. 40	-57. 10	-30. 00	-27. 10	RMS		

12750.00 (MHz)

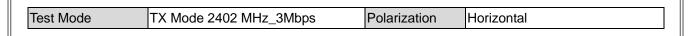


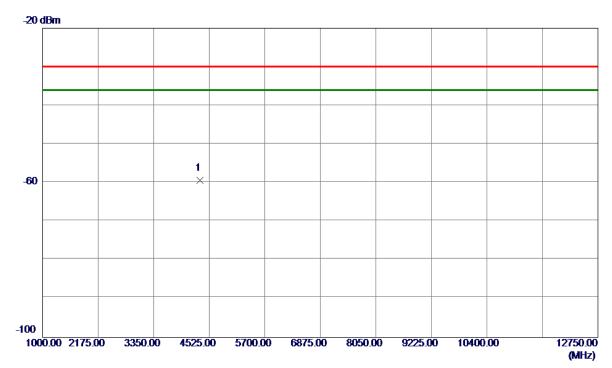
1000.00 2175.00

3350.00

4525.00

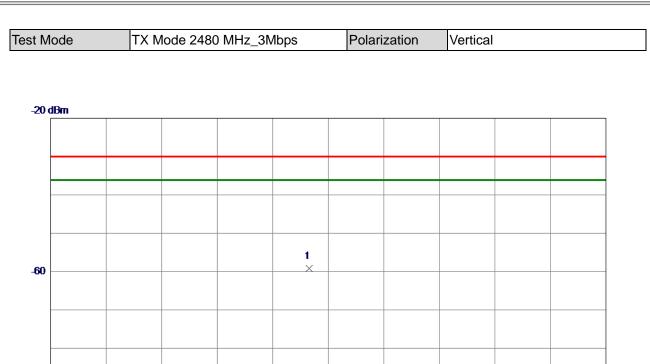
5700.00


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment	
1 *	4264, 150	0 -63, 47	4. 88	-58, 59	-30, 00	-28, 59	RMS		


6875.00

8050.00 9225.00

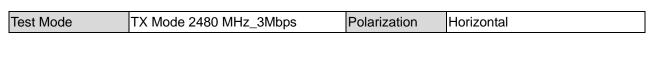
10400.00

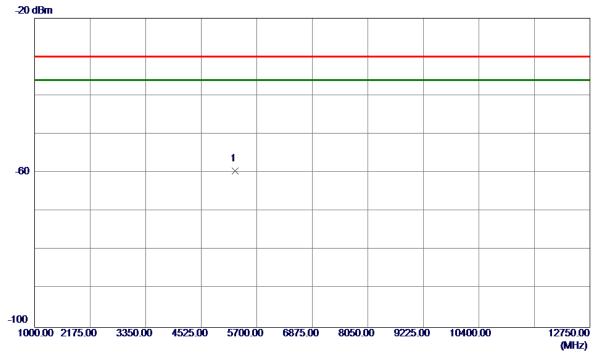


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment	
1 *	4332 300	0 -64 17	4 79	-59 38	-30 00	-29 38	RMS		

-100

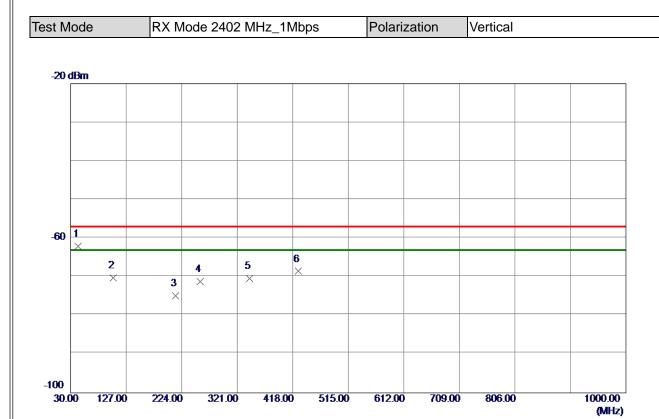
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1 *	6466. 1000	-64. 29	5. 44	-58. 85	-30. 00	-28. 85	RMS	


8050.00 9225.00

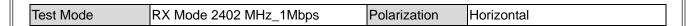

10400.00

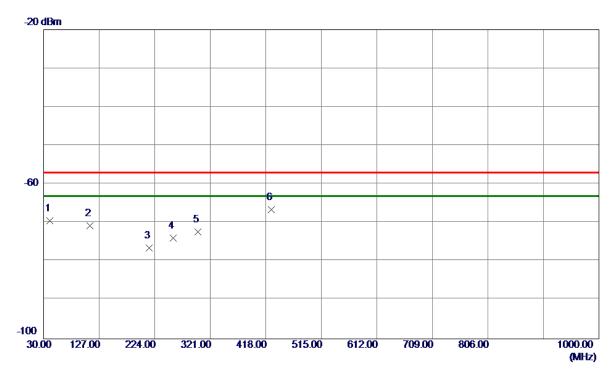
12750.00 (MHz)

1000.00 2175.00 3350.00 4525.00 5700.00 6875.00



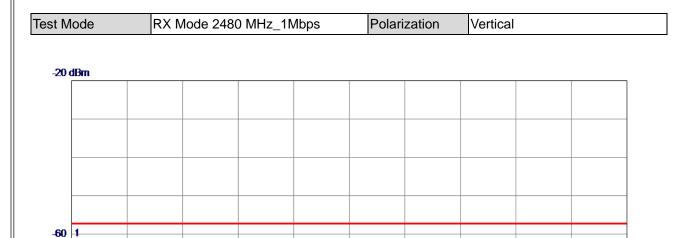
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment	
1 *	5246, 450	0 -64 69	5. 15	-59. 54	-30, 00	-29 54	RMS		


APPENDIX J - RECEIVER SPURIOUS EMISSIONS



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1 *	42.6100	-60. 02	-2. 04	-62. 06	-57. 00	-5. 06	RMS	
2	104. 1080	-61. 05	-9. 25	-70. 30	-57. 00	-13. 30	RMS	
3	213. 5240	-67. 72	-7. 09	-74. 81	-57. 00	-17. 81	RMS	
4	256. 4950	-67. 17	-3. 98	-71. 15	-57. 00	-14. 15	RMS	
5	342. 0489	-67. 76	-2. 65	-70. 41	-57. 00	-13. 41	RMS	
6	427. 5060	-67. 20	-1. 36	-68. 56	-57. 00	-11. 56	RMS	

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	40. 2820	-66. 21	-3. 24	-69. 45	-57. 00	-12. 45	RMS	
2	110. 7040	-61. 85	-8. 81	−70. 66	-57. 00	-13. 66	RMS	
3	213. 9120	-69. 96	-6. 45	-76. 41	-57. 00	-19. 41	RMS	
4	256. 3980	-69. 48	-4. 50	−73. 98	-57. 00	−16. 98	RMS	
5	299. 1750	-68. 53	-3. 84	-72. 37	-57. 00	-15. 37	RMS	
6 *	427. 4090	-65. 16	-1. 37	-66. 53	-57. 00	-9. 53	RMS	


2

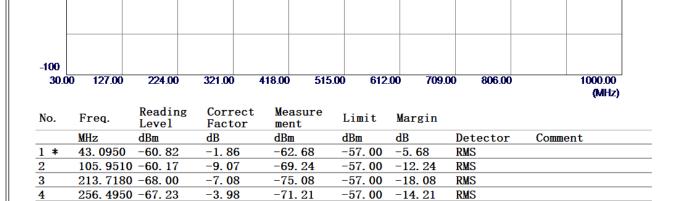
341. 9520 -68. 25

427. 4090 -67. 24

6

3

6

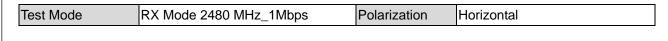

-70.90

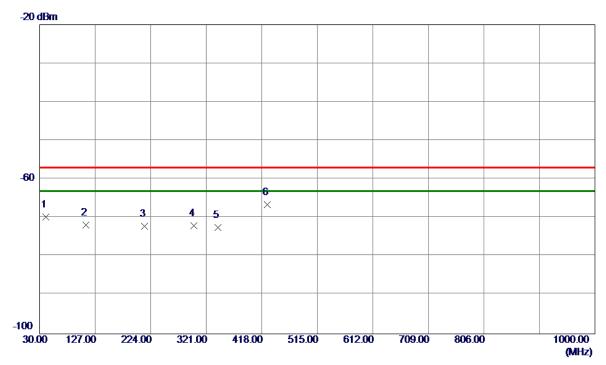
-68. 59

-2.65

-1. 35

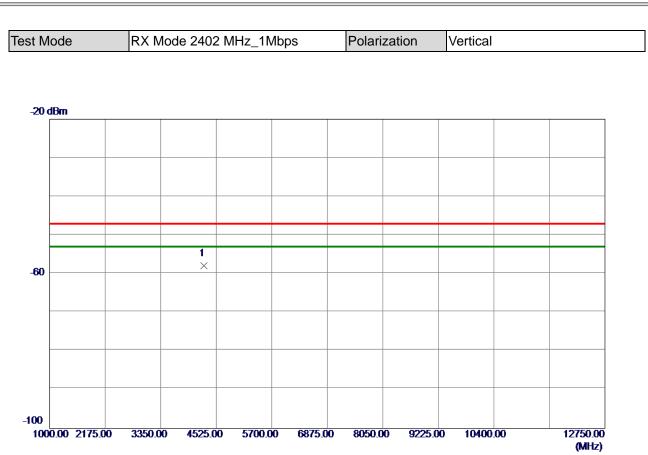
5


-57. 00 -13. 90


-57.00 -11.59

RMS

RMS



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	40. 7670	-66. 66	-3. 17	-69. 83	-57. 00	-12.83	RMS	
2	111. 2860	-63. 07	-8. 73	-71. 80	-57. 00	-14. 80	RMS	
3	213. 7180	-65. 67	-6. 46	-72. 13	-57. 00	-15. 13	RMS	
4	299. 1750	-68. 20	-3.84	-72. 04	-57. 00	-15.04	RMS	
5	341. 8550	-69. 59	-2. 82	-72. 41	-57. 00	-15. 41	RMS	
6 *	427. 5060	-65. 21	-1. 38	-66. 59	-57. 00	-9. 59	RMS	

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment	
1 *	4264, 150	0 -62, 85	4. 88	-57. 97	-47. 00	-10. 97	RMS		

12750.00 (MHz)

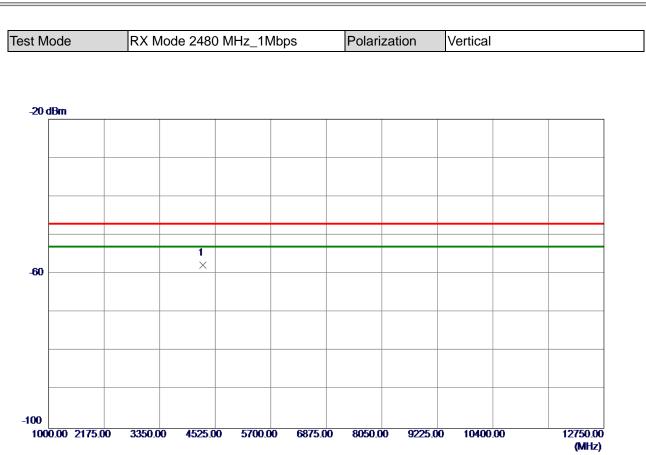
-100

1000.00 2175.00

3350.00

4525.00

5700.00

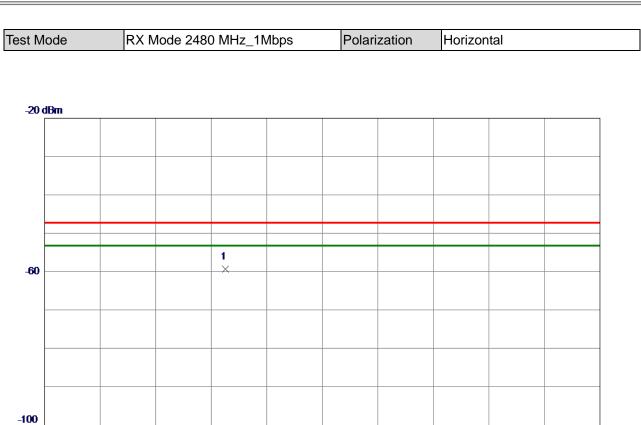

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment	
1 *	4327, 0120	0 -64. 06	4. 77	-59, 29	-47, 00	-12, 29	RMS		

6875.00

8050.00 9225.00

10400.00

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment	
1 *	4264, 150	00 -62, 67	4. 88	-57. 79	-47. 00	-10. 79	RMS		


12750.00 (MHz)

1000.00 2175.00

3350.00

4525.00

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBm	dB	dBm	dBm	dB	Detector	Comment	
1 *	4822 2750	-64 44	5 39	-59 05	-47 00	-12 05	RMS		

8050.00 9225.00

10400.00

5700.00 6875.00

APPENDIX K- RECEIVER BLOCKING

		Receiver B	locking Result						
		Wanted Signal Mean Power	Blocking Signal	Blocking Signal	Blocking Signal				
Modulation	Operation	from Companion Device	Freq.	Power	Power + Max.	PER			
Mode	Mode	(dBm)	(MHz)	(dBm)	Ant. Gain	(%)			
		(See Note 1)	(See Note 2)	(See Note 1)	(dBm)				
		-66.43	2380	-34	-31	1.20			
1 Mbps	hopping	hopping	honning	honning	-00.43	2300	-34	-31	1.00
1 Mbps			-66.43	2504	-34	-31	0.60		
		-00.43	2584	-34	-31	0.60			
Limit		PER(P	acket Error Rate)	≤ 10%					
Result			Pass						

- The levels had been corrected by the actual antenna assembly gain.
 The test report did not use the shift of blocking frequencies with the standard Clause 5.4.11.2.1 Step 5.

APPENDIX L- INFORMATION AS REQUIRED BY EN 300 328 V2.2.2, CLAUSE 5.4.1

In accordance with ETSI EN 300 328, clause 5.4.1, the following information is provided by the manufacturer. a) The type of wideband data transmission equipment: non-FHSS b) In case of FHSS: (1) In case of non-Adaptive FHSS equipment: The number of Hopping Frequencies: N/A (2) In case of Adaptive FHSS equipment: The minimum number of Hopping Frequencies: _____15 (3) The (average) dwell time: 0.3168 s c) Adaptive / non-adaptive equipment: ☐ non-adaptive Equipment 🛛 adaptive Equipment without the possibility to switch to a non-adaptive mode ☐ adaptive Equipment which can also operate in a non-adaptive mode d) In case of adaptive equipment: The maximum Channel Occupancy Time implemented by the equipment: N/A ms * In case of non-FHSS equipment: ☐ The equipment is Frame Based equipment ☐ The equipment is Load Based equipment ☐ The equipment can switch dynamically between Frame Based and Load Based equipment The CCA time implemented by the equipment: N/A µs ☐ The equipment has implemented a DAA mechanism ☐ The equipment can operate in more than one adaptive mode

f) The worst case operational mode for each of the following tests:
(1) RF Output Power: 8.08 dBm
(2) Power Spectral Density: N/A dBm/MHz
(3) Duty cycle, Tx-Sequence, Tx-gap: N/A
(4) Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS
equipment): <u>0.3168</u> s, <u>1</u> , <u>79</u>
(5) Hopping Frequency Separation (only for FHSS equipment): <u>1.00</u> MHz
(6) Medium Utilization: N/A
(7) Adaptivity: N/A; Receiver Blocking: 1.20 %
(8) Nominal Channel Bandwidth: <u>1.233</u> MHz
(9) Transmitter unwanted emissions in the OOB domain:27.37_ dBm
(10) Transmitter unwanted emissions in the spurious domain:69.81_ dBm
(11) Receiver spurious emissions: <u>-62.06</u> dBm
g) The different transmit operating modes (tick all that apply):
☑ Operating mode 1: Single Antenna Equipment
□ Equipment with only one antenna
☐ Equipment with two diversity antennas but only one antenna active at any moment in time
☐ Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode
where only one antenna is used (e.g. IEEE 802.11™ legacy mode in smart antenna systems)
☐ Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming
☐ Single spatial stream/Standard throughput (e.g. IEEE 802.11™ legacy mode)
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
NOTE: Add more lines if more channel bandwidths are supported.
☐ Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
☐ Single spatial stream/Standard throughput (e.g. IEEE 802.11™ legacy mode)
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 1
☐ High Throughput (> 1 spatial stream) using Nominal Channel Bandwidth 2
NOTE: Add more lines if more channel bandwidths are supported.

h)	In case of Smart Antenna Systems: N/A
	(1) The number of Receive chains:
	(2) The number of Transmit chains:
	☐ symmetrical power distribution
	☐ asymmetrical power distribution
	In case of beam forming, the maximum (additional) beam forming gain:dB
	NOTE: The additional beam forming gain does not include the basic gain of a single antenna.
i)	Operating Frequency Range(s) of the equipment:
''	(1) Operating Frequency Range 1: <u>2402</u> MHz to <u>2480</u> MHz
	NOTE: Add more lines if more Frequency Ranges are supported.
	NOTE. Add more lines if more i requency ranges are supported.
j)	Nominal Channel Bandwidth(s):
	(1) Nominal Channel Bandwidth 1: <u>1.233</u> MHz
	NOTE: Add more lines if more channel bandwidths are supported.
k)	Type of Equipment (stand-alone, combined, plug-in radio device, etc.):
	☐ Combined Equipment
	☐ Plug-in radio device
	☐ Other
I)	The extreme operating conditions that apply to the equipment:
	Operating temperature range: <u>0</u> ° C to <u>45</u> ° C
	Details provided are for the: stand-alone equipment
	□ combined equipment
	☐ test jig

n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the
combined equipment or test jig in case of plug-in devices:
Details provided are for the: Stand-alone equipment combined equipment test jig Supply Voltage AC mains State AC voltage 100-240 V DC State DC voltage V In case of DC, indicate the type of power source Internal Power Supply External Power Supply or AC/DC adapter Battery Other:
o) Describe the test modes available which can facilitate testing:
The measurements shall be performed during continuously transmitting and normal operation.
p) The equipment type (e.g. Bluetooth®, IEEE 802.11™, IEEE 802.15.4™, proprietary, etc.): Bluetooth®
s) Geo-location capability supported by the equipment: ☐ Yes ☐ The geographical location determined by the equipment as defined in clause 4.3.1.13.2 or clause 4.3.2.12.2 is not accessible to the user ☒ No
End of Test Report